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Abstract - Tmage segmentation can be viewed as a clustering
problem in which small image patches are grouped together
based on their color and texture features. In this paper, we
present a Probabilistic Segmentation Framework (PSF) for
segmentation of rock images. Qur proposed framework
consists of a combination of probabilistic clustering and edge
detection technique. The clustering cost function is based on a
Maximum-likelihood (ML) estimator. After clustering the
pixel-patches based on their features, we approach the
improved image segmentation process in two additional steps.
First, we map the resulted clusters into the image domain to
form subimages. Second, using edge detection on each
subimage, we refine and smooth the subimages to finalize the
resultant segments. A qualitative comparison of the PSF
methodology with alternative techniques using rock images is
presented. We demonstrated that the PSF provides the
highest quality segmentation amongst the compared
techniques.

L. INTRODUCTION

Object recognition and image analysis depends on image
segmentation as a starting point, partitioning segments
based on the properties of the individual regions.
Segmentation of rock images is crucial for the mining
industry, geological sciences, and in space science where
rock information is received from digital images sent from
Space rovers or drilling equipment for rock minerals
identification [1]. Experimental rock textures are relatively
new in the field of geology and it is used to investigate the
effect of fragmentation on minerals, for example during
earthquakes. The textural information has been mainly
acquired via non-digital methods such as manual or semi-
automatic region counting from printed images [2]. These
methods, are time consuming, and are heavily dependent
on the interpreter’s experience. In order to overcome these
problems, we have started our collaborative research effort
to combine geology experience with computational
methods. The result of our collaboration is a set of
computerized and efficient segmentation techniques.
These techniques are best suited for rock texture analysis,
In our earliest effort, we presented an edge detection
technique to segment and separate minerals from their
background [3]. We selectively use digital filters to reduce
the noise prior to edge detection. Following the edge
detection, morphological operations are applied including
dilation, and  filling on the compliment of the image
gradient. Malik el. Al [4] presented their work on gray
natural images include rocks that almost have no noise and
they introduced a gating operator based on the
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textured-ness of the neighborhood at a pixel. In their work
they presented a localized measure of how two neighboring
pixels belong to the same region. Also, they used the
spectral graph theoretic framework of normalized cufs to
find partitions of the image into regions of coherent texture
and brightness, Anderson e, Al. in their work [5] applied
Edge-flow and surface density estimation to employ image
segmentation for rocks detection. The texture features are
the result of using Gabor wavelet decomposition which
applies filters at different scales and orientations. The
texture feature vectors are then used to cluster the rocks into
groups of similar texture using k-means. The author K.B.
Eom in [6] represents a texture model as an output of a 2D
finite filter with simple input process. The maximum -
likelihood (ML) estimators of the model are used as texture
features. The texture features are classified with a neural
network for supervised segmentation, and clustered by the
fuzzy C-mean algorithm. Results are shown on natural and
synthetic images. Each of the approaches in [4], [5], and [6]
did not handle images with rocks having noise inherited by
the experimental settings.

In our work, we are developing a probabilistic
framework PSF that segment the rock images efficiently
with the presence of noise. The rock images are acquired
under experimental and controlled setting. Under these
settings, a process of rotary shearing is applied 1o the rock
and magnification degrees ranges from 250x to 1000x are
implemented. The shearing process adds sub-micron
particles especially when images are acquired in arcas
where more intense shearing has occurred. This resulted in
noise via pixel-scale diffusion of gray levels in addition to
the loss of resolution at higher magnifications. These
characteristics impose a challenge on the segmentation of
the images.  Our work is an extension of the confribution
infroduced in [7].

The PSF methodology enhances images using rank
fillers. Median filter [8] removes the outliers and preserves
more the higher frequencies. In a median filter, a window
slides across the data and the median value of the samples
inside the window is chosen to be the output of the filter.
This nonlinear filter, compared to linear ones, shows certain
advan(ages: edge preservation, smoothing of signals, and
efficient noise attenuation with robustness against
impulsive-type noise. This is an advantage for rock images
because of the random spread of minerals particles perform
as outliers and at the same time high frequencies are needed
for further image analysis. We have to mention that the
median filter may attenuate fine details, sharp corners and
thin lines. Despite of the fact that this implies data loss, the
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probabilistic nature of the framework combined with edge
detection succeeds to protect many of this information in
the form of meaningful and edge preserved segments. The
result of rock segmentation is used by a geologist to
extract information regarding the mineral particle size
distribution changes. In addition, properties such mineral
particle size, and mineral shape may be acquired for
understanding the mechanics of brittle fragmentation under
different conditions. The PSF has two phases. The first
phase begins with decomposing the image into subimages
and each subimage corresponds to one cluster. Clusters are
obtained by the application of probabilistic clustering. We
view the image by pixel patches with six different features
based on color and texture. The features are used to cluster
the patches into subimages. A subimage could consist of
several regions and since clustering is performed in the
feature space, patches correspond to all image regions that
are coherent in the features. The second phase refines the
subimages using edge detection and morphological
operations.

II. THE PSF METHODOLOGY

The rock images are backscattered Scanning Electron
Microscope (SEM) images of simulated granite gouge
(gouge is the term used for pulverized rock material found
along geologic faults). The gouge samples were deformed
in a rotary frictional sliding (shearing) of total
displacement ranging from 3mm to 409mm (see [9] for
detailed description of materials, methods, and conditions
of the experiments). Loss of resolution at higher
magnifications results in image noise via pixel-scale
diffusion of gray levels. The same effect is also produced
due to presence of sub-micron particles in areas of the
sample where more intense shearing has occurred. The
granite gouge 1s a loose aggregate of minerals Quartz, K-
Feldspar, which they could be distinguished by their
different tones of gray on backscattered SEM images. The
K-Feldspar is the white particles while the quartz is the
gray particles.

A. Image Pre-Processing

The images are converted from RGB into CIE-Lab
color space. The Lab color model has three independent
components. The L component is the brighiness (also
called luminosity) and extends from 0 (black) to 100
(white). The a and b are the color components and each of
three components can be manipulated separately. The
image is enhanced by first applying contrast adjustment
and then applying median filter on the L compenent. The
parameters to determine the size of the filter are the
magnification and the displacement value. An increase in
the rock magnification, displacement, or both implies an
increase in the size of the filter which ranges from 11 to
17. For example, an image with 250x magnification and
3mm displacement we apply a filter of size 11 and for an
image with 1000x and 409mm we apply a filter of size 17.
In order to reduce the amount of data presented to the

clustering algorithm while preserving the information
needed for image analyzing. Each of the L, a, and b
components are uniformly partitioned into BxB patches. In
our case B is 4. If each component is of size MxN and
divided by square patches of size B then the resulted
number of patches is n=MpxNz where M, :fM / 81
andN, =[N/B].
application of a median filter of size 13 on an image of
magnification 250x and of displacement 3mm. The median
filter is applied to the L-component and shown in figure 1-
b). The gray levels representing a mineral particle became
closer and much of the noise was removed.

Figure 1 shows the results of an

Figure 1: Application of median filter of size 13 on
L-component of an image has 250x and 3mm displacement

B.  Feature Extraction

Many of feature exiraction techniques have been based on
the combination of color and texture features [10]. The
shape features provide better results for isolated shapes, We
extract for each patch, six features three of which are color
features and three are texture features. The color features are
extracted from the color layout technique [11]. In color
layout, the image is represented by its local characteristics.
The average color is calculated for each patch in each
component (L, a, and b) resulting in a three component
average vector for each patch. The three color features of a
patch i are named f), fi,, and fi;, i=1,...,n . The texture
features are extracted from the 2D wavelet transform which
is a multi-scale image representation where the image can
be represented at different levels of detail. The idea of
wavelet is to use the features of the wavelet coefficients at
the coarse scale levels. The 2D-filtering decomposes an
image into signals; three of them are detail signals which are
directionally sensitive: LH, HL, and HH emphasize the
horizontal, vertical, diagonal features respectively. The
energy in the high bands, where texture lies, is the square
root of the second order moment of wavelet coefficients. To
obtain these moments, a one-level Daubechies wavelet
transform is applied to each of the patches. The texture
features of a patch 7 are named fi4, f; 5, and fi4, i=1,...,n. The
feature £ 4 is computed from the coefficients of the LA band
{ap | a1, Qrer, b Qreg, g+ @S 10 equation 1.
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Similarly, the features f;, and f; are computed but f5 is
computed from the HL band while f; is computed from the
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HH band. The process of feature extraction will bring out
a feature vector F of size nx6, the features of patch / is

= Z(fu, ’f;ﬁ) where i=/,.., n. The vector F is

I
normalized by normalizing each of the six features by its
mean and standard deviation. Normalization gives each
feature an equal contribution.

C.  The PSF Segmentation

In PSF first phase, we use the Expectation Maximization
(EM) algorithm as the probabilistic clustering approach
[12] [13] of the framework. We have chosen EM because
it is known for its robustness to noisy data. EM can be
used as ML estimator. It is convenient to recast the
problem in the equivalent form of minimizing the negative
log likelihood of the data set. Since EM is an iterative
algorithm we set the maximum iteration to 150 iterations.
We found that the average of the minimum negative
Likelihood for the image dataset is reached with k=4 at
iteration 105. In PSF second phase, we apply edge
detection and morphological operations on the Quartz and
K-Feldspar subimages obtained from clustering. The
framework was implemented using Matlab 6.5 and the EM
main functions are obtained from the Netlab Toolbox [14].

To determine number of clusters k& we used the
Adjusted Rand Index (ARI). ARI [15] is a measure of the
agreement between two detected partitions since we
assume each patch in the features vector is assigned to
only one class. The ARI can measure the difference of two
partitions even when the number of clusters is different,
and its value lies between 0 (no agreement) and 1 (total
agreement). For the comparison between two partitions,
two contingency matrices is computed that define which
cluster each entity has been assigned to. Given a set of #
objects 5={0,,..,0,}, suppose that P=(p,...pz! and
O={q,,...qc} represent two different partitions of the
objects in .S such that

Uf:lpr=S:U(j=]qj (2)
, and
pOp=¢=q,Ng,1<i=i'<SRI1<j+ j'<C 3)

We calculate the ARI for a number of repetitions »
(maximum 8) of running EM and each repetition
automatically calculates a number of clusters i (see [7])
and a corresponding partition. For each pair of repetition x
and y, where x, y =/, .., r, the ARI (P, P,) is computed
where P and P, denotes partitions corresponding to
repetition x and y. Then for all x=/, ... the meanARI(P,)=
mean (ARI (P, P,)) for all y=/,..r is evaluated. The
maximum meanARI points out to the partition that has the
maximum agreement with the all other partitions. The ARI
implementation shows that the best number of clusters
describing our rock images is k=4. Hence, when ordered
from the highest gray level to the lowest, the clusters
represent the K-Feldspar, the Quartz, the grinded materials
(gray background) and finally the black pores. We use
random initialization of centers using the number of
feature vectors then the initial centers arc chosen at

intervals starting from the beginning of the feature vector
and the interval is defined to be the quadrant of the nuraber
of features. We have trained the model using different
initialization to ensure obtaining good models.

K-Leveled Image: The block-cluster membership is
visualized by assigning the cluster centroid to every patch
that belongs to the corresponding cluster constructing a new
image array. The patches positions of the original image are
pre-stored to assist in assigning the centroids to its cluster
patches in the correct position and the result of this
assignment is called a K-Leveled image.

Edge Detection and Morphology: This is the second
phase of the framework and used for segmentation
refinement and as a tool to obtain more linear edges. We
derive four subimages the same way as we did with the K-
Leveled image but restricting the extraction to one specified
class instead of all classes. On Quartz and K-feldspar
particles subimages we apply an erosion operation using the
disk structuring element with radius 1 for opening the
closed thin lines representing minerals fine particles
surrounding  other minerals in the rock. Second, an
application of canny edge detection is followed by filling
the resulted gradient. Minerals particles at the image
borders or those less than 50 pixels are discarded because it
is incomplete or insignificant respectively. This phase of
PSF is extremely useful especially the use of morphological
operations with quartz subimages. Usually, the binary mask
of quartz (see figure 2-d) have more thin lines than the
feldspar since quartz has more similar intensity values to the
gray background.

[II.  EXPERIMENTAL RESULTS

This section presents results of applying PSF approach on
images that have rocks that went under different conditions
of shearing and magnification. The shearing is represented
by the displacement value where 3mm is the least
displacement applied on the rock resulting in minor
fragmentation while 409 mm is the largest displacement
resulting in major fragmentation. The rocks in figure 2-a)
have 250x magnification and 3mm displacement this mean
it has the less noise. Figure 2-b) shows the K-Leveled image
where £=4, in which the minerals particles are distinguished
and separated from each other. The particles of K-feldspar
and Quartz are shown in figure 2-c) and figure 2-d)
respectively. In figure 3-a) the rock magnification is 500x
and the displacement is 3mm. Figure 3-b) display the K-
Leveled image and the K-feldspar and quartz particles are in
the subimages shown in figure 3-c) and figure 3-d)
respectively.




Figure 2: (a) Original image, (b) K-Leveled image,
(¢) The K-Feldspar particles (d) The Quartz particles

Figure 3: (a) Original, (b) K-Leveled image (c) PSF
K-Feldspar particles and (d) PSF Quartz particles

The Image in figure 4 has more noise due to 65mm
displacement and 1000x magnification. The EM clustering
of this image tolerated this noise and the PSF result is
shown in figure 4-b).

Figure 4: (a) Original, and (b) PSF K-Feldspar particles

Figure 5-a), presents the negative minimum likelihood
value is monotonically decreasing with the increase of
iteration until it stops decreasing and that is when EM
converges. Figure 5-b) shows the minimum negative
likelthood Value reached for each image in the image
dataset.
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Figurc 5: EM Minimum Likelihood Results

IV. EVALUATION OF RESULTS

The experiments involved room temperature shearing of the

simulated gouge by frictional sliding displacement. A set of
51 images studied here underwent from 3mm to 409mm of
total rotary displacement. The images [9] are RGBs of
average size 980x1400 and were taken at SEM
magnifications 250x, 500x, or 1000x of the original rock. In
this section we evaluate PSF by comparing the results of
with other clustering models such as Kmeans [5], and FCM
(Fuzzy C-Mean) [6] where number of clusters is A=4. The
criteria considered for comparison are the perceptional
quality of segmentation and clustering execution time. The
image preprocessing steps, feature extraction, and K-
Leveled image construction, as discussed in section 11, is the
same for Kmeans and FCM. In figure 6, the PSF, Kmeans
and FCM K-Leveled images are presented. The rocks in the
image in figure 6-a) has been exposed to maximum
magnification 1000x and maximum displacement 409mm
and this makes it hard to segment. An expert estimated that
the results of PSF in figures 6 and 7 are better than that of
Kmeans and FCM and the segmentation resulted from FCM
is better than that of Kmeans. The criterion determined by
the expert is that the selected technique is the technique that
provides the more separated and the less eroded or missed
minerals particles.
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Figure 6: (a) Original, (b) EM K-Leveled, (¢) Kmeans K-Leveled,
and (d) FCM K-Leveled

Figure 7 depicts (in pairs) the quartz particles
segmentation before and after refinements of the K-
Leveled images in figure 6 after applying the second phase
of PSF. Figures 7-a) and 7-b) show the binary mask of
PSF K-Leveled image before and after second phase
respectively. Figures 7-¢) and 7—d) are the binary mask of
Kmeans K-Leveled image before and after PSF second
phase. Finally, figures 7-¢) and 7-f) are the binaries of
FCM before and after the PSF second phase. In figure 7-a)
the edges of the minerals are thinner, linear and separated
than in of figures 7-c) and 7-e). This resulted in better final
segmentation in figure 7-b) and meaningful particles to the
geology expert and hence considered figure 7-b) is the
highest quality obtained. Figures 7-c) and 7—e¢) reveals that
their particles are more connected to other particles and to
the borders. This resulted in the lost of the largest particle
when the second phase was applied as presented in figures
7-d) and 7-1).

Figure 7: (a) and {(b) PSF-Quartz, (c) and (d) Kmeans & second Phase-
Quartz, and (c) and (f) FCM & second phase-Quartz

Figure 8 describes the results of another comparison
between PSF, Kmeans, and FCM using an image of 500x
with displacement 509mm. The resulted binaries in figure 8-
¢) and 8-d) have lost whole particles while in figure 8-b) the
segmentation has the highest quality, the minerals particles
are more linear and more separated from other edges.

Figure 8: (a) Original, (b) PSF-Quartz, (¢) Kmeans & second Phasc -
Quartz), and (d) FCM & sceond phase-Quartz

For the perceptual quality, a geologist conquered that
PSF segmentation is better than FCM and Kmeans with the
second phase. Using visual inspection we were able to
quantity the performance of the three altemative techniques
applied to the test images. The geologist was given 133
images in which for each image in the image dataset there is
three binary images, one resulted from PSF, and the other
two resulted from Kmeans and FCM after second phase.
The geologist rated for the PSF methodology 46 images out
of 51 images as the highest quality segmentations obtained
to be used for further interpretation and rated for the
segmentation of FCM combined with PSF secand phase 26
images of 51 images as high quality. Finally, the geologist
rated for the segmentation of Kmeans combined with PSF
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second phase 1 image out of 51 images as high quality. In
table 1, the results of the comparison of the application of
the three techniques on the image dataset are reported,
90% of the images have high quality segmentation using
PSF while 51% of them have high quality segmentation
with FCM, and almost 0% of the images have high quality
segmentation with Kmeans. Another consideration for
evaluation is the average execution time for the clustering
techniques shown in table 1. For EM, the average
execution time is slower than Kmeans and FCM. The
reason for this is because EM spends more time for the
probabilities and covariance matrices calculations but this
was substituted in the quality of the segmentation obtained
as stated in table 1.

TABLE |

Percentage of Quality of scgmentation and
Average exccution time per image of PSF, FCM, and Kmeans

Method High Quality Average Execution Time
Segment. Percent,
Kmeans+2™ 0.02% 64.924 sec
Phase
FCM+2™ 50.9% 69.408 sec
Phase
PSF 90.1% 80.729 scc

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new framework PSF
that seems well adapted to rock image segmentation. PSF
has two phases, the clustering phase, and a refinement
phase. In the first phase, EM clusters the image using the
ML estimation. EM is robust to the image noise and
provides better subimages. In the second phase, the edge
detection and morphological operations provide linear and
representative edges similar to the original and hence the
resulted segments are more meaningful. The second phase
can be considered as a substitute to the time consuming
post-processing especially for the quartz subimages. We
compared the PSF methodology with the fuzzy C-mean
and Kmeans and we found that the PSF outperformed
Kmeans and FCM and provided the highest quality
obtained for segmentation. The PSF gives a promising
segmentation result. Our future work will provide an
integrated framework for PSF segmentation and region
content-based retrieval of rock images.
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