Nonlinear Bayesian Estimation of Recurrent Neural Networks
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Abstract ~We consider the problem of recurrent neural network
training as a Bayesian state estimation, The proposed algorithm
uses Gaussian sum filter for nonlinear, non-Gaussian estimation
of network outputs and synaptic weights. The performances of
the proposed algorithm and other Bayesian filters are compared
in noisy chaotic time series prediction.

T INTRODUCTION

Recurrent Neural Networks (RNN) form a wide class of
neural networks in which feedback connections between
processing units (artificial neurons) are allowed. In this way
the static input-output mapping of a neural network is
changed into a dynamic system. A simple way of introducing
feedbacks into neural networks is to apply local feedback,
where adaptive feedback connections are provided only from
a processing unit to itself. Such networks are called locally
recurrent neural networks. If feedback connections exist
between distinct processing units, the networks are called
globally recurrent. At least in theory, their modeling
capabilities should be much richer than for the simple local
feedback networks,

In this paper we will consider training of globally
recurrent neural network which can be represented by the
following state space model;
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Dynamics of recurrent neuron outputs s, and synaptic
weights w, is described by (la) and (1b) respectively.
Observation equation (Ic) represents the additional layer of
output neurons (e.g in Elman RNN) or it simply selects
observable among existing recurrent neurons (for fully
connected RNN or NARX RNN).

The state space model (1) can be written in a more
compact form as;

X = [, 0. ) +d, (2a)

Vi = h(x)+v, (2b)

where x, represents the hidden state of a RNN, the
concatenated vectors of neuron outputs and synaptic weights:
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There are numbers of algorithms for training synaptic
weights of recurrent neural networks, Such algorithms are
usually based on the exact or approximate computation of the
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gradient of an error measure in the weight space. Well
known approaches that use methods for exact gradient
computation are back-propagation through time (BPTT) and
real time recurrent learning (RTRL) [8]

In this paper we consider the problem or recurrent neural
network (RNN) training as Bayesian state estimation and
propose an algorithm based on Gaussian sum filter for
nonlinear, non-Gaussian estimation of RNN.

The central problem of the Bayesian estimation is
determination of the probability densily function of the
hidden state of a dynamical system. In a sequential
estimation framework, the state filtering probability density
function (pdf) p(xt/vox), where you ={yg, 7, yi}
denotes the set of all observations, represents the complete
solution. The optimal state estimate with respect to any
criterion can be calculated based on this pdf.

Recursive  Bayesian  estimation algorithm  for
determination of the filtering pdf consist of two steps:
prediction and update. In the first step the previous
posterior p(xz_;/yg4-1) is projected forward in time using
the probabilistic process model:
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The state transition density p(x; /x,_;) is completely
specified by f(-) and the process noise distribution.

In the second step, the predictive density is updated by
incorporating the latest noisy measurement Yi using the
observation likelihood p(yy /x;) to generate the posterior:
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The recurrence relations (3) and (4) are only conceptual
solutions and the posterior density cannot be determined
analytically in general. The restrictive set of cases includes
the well known Kalman filter. Kalman filter represents the
optimal solution of (3) and (4) if the posterior density
P(xi/yo4) and dynamic and observation noise are Gaussian
and f(-) and A() are known linear functions.

In case of RNN training, these assumptions do not hold.
RNN’s are in general nonlinear and noise densities are not
strictly Gaussain. When the analytic solution is not tractable,
some approximations and suboptimal solutions have to be
considered. Perhaps the most celebrated suboptimal solution
is the Extended Kalman Filter (EKF), which assumes the
Gaussian property of noise and uses Taylor expansion of
/() and A() (usually up to the linear term) to obtain the
recursive estimation for p(x;/yg.). EKF has been
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successfully applied in RNN training [9,5] due to important
advantigies compared to RTRL and BPTT. First, EKF uses
second order information, recursively estimated as
covariance matrix, to improve convergence speed. RTRL and
BPTT are based on the first order derivative information and
usually exhibit slow convergence. Second, EKF generalizes
the notion of teacher forcing [8,9]. The idea of teacher
forcing is to use desired values of neuron outputs where
specified, in place of actual values, to compute the future
output of the network. In this way the convergence of
training is additionally improved. EKF generalizes teacher
forcing for RNN’s with hidden recwrrent neurons (e.g. for
Elman RNN with adaptable both feed-forward and recurrent
connections), and for noisy training data.

Recently, a family of new derivative free filters have been
proposed as an alternative to EKF for estimation in nonlinear
systems with noise distributions approximated by single
Gaussian. Divided Difference Filters (DDF), derived in [3],
are based on polynomial approximation of nonlinear
transformations using multidimensional extension of
Stirling’s interpolation formula. The Unscented Kalman
Filter (UKF) [2] uses the true nonlinear models and
approximates the state distribution using deterministically
chosen sample points. Surprisingly, DDF and UKF result in
similar equations and are usually called derivative free
filters. It has been shown that DDF and UKF outperform
EKF in state and parameter estimation [7, 6].

In this paper we consider Gaussian Sum (GS) filter in
RNN training when noise densities cannot be approximated
by a single Gaussian. Derivation of GS filter equations is
based on the assumption that any probability density function
can be approximated sufficiently accurately using finite
Gaussian mixture. We have implemented GS filter as a bank
of parallel Bayesian filters (EKF, UKF, DDF or others).

II GAUSSIAN FILTERS IN RNN TRAINING

We shall consider the training of Non-linear AutorRegressive
with eXogenous inputs (NARX) recurrent neural network.
They outperform classical recurrent neural networks in tasks
that involve long term dependencies for which the desired
output depends on inputs presented at times far in the past.

A NARX model of a dynamic system is given by:

(5)

where s, comresponds to the true (noiseless) output of the
system, u, is the known input at time step k, A, and A, are
the input and the output order, and f()is a non-linear
function. We shall consider a NARX model for which f(-)
is implemented as a Multilayer Perceptron.
The output of the ith hidden neuron of a NARX recurrent
network is given by:
} (6)
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previous A, inputs, b; =[bigbi..bip biyp.byy A ]T denotes
the vector of hidden neuron weightsf, and nl; “denotes the
dimension of the input u, .

The network output is given by:

0

where a=[a, a,..a,, ] are the output weights, w denotes the
n,, dimensional vector of unknown network weights,
w=[a'b"]" and ny 1s the number of hidden neurons.

Ny
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i=l

Figure 1. NARX recurrent neural network

Estimation of recurrent neural networks can be put in the
framework of nonlinear state estimation by defining the state
space model of network dynamics. The state space model of
NARX recurrent network is given by:
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The previous model can be expressed in a compact form (2)
if we use x to denote the vector of concatenated network

outputs s, and parameters w;, .

Given the state space model of NARX RNN we can make
assumptions that the state, observation and noise terms can
be modeled as Gaussian random variables. In that case only
the conditional mean x; =£[x;/yo.] and its covariance
Pe, = E[(xp =3 )x — %) }yujk] have to be recursively
calculated to determine the Gaussian posterior density.

X =X +Ke(e = Vi) (10a)
-
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where the optimal terms in this recursions are given by

Xr = Elxg /yopa] (11a)
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Terms (11) and (12) are obtained by propagating the state
through the nonlinear dynamic and observation model (2). In
the following subsection we shall illustrate the techniques
that EKF, DDF and UKF use to propagate random variable
through the nonlinear transformation.

Suppose that x is a random variable with mean % and
covariance P,. A random variable y is related to x through
the nonlinear function y = f(x). We wish to calculate the
mean j and covariance P, ofy.

A, Extended Kalman filter

In case that fand /4 are linear, the Kalman filter calculates all
terms exactly, and it can be considered as an efficient method
for analytical propagation of Gaussian random variable
through linear system dynamics. Kalman filter can also be
applied for nonlinear model if Taylor-series expansion of
dynamic and observation equations are provided.

Taylor series expansion of a nonlinear transformation
around the mean of the considered random variable x is
given as;

y=fE)=f@)+Vf&+ v a7+ Lvissd o 3)
where the zero mean random variable & has the same
covariance P, as x. The first order extended Kalman filter
equations are obtained by approximating f(x) with
S(¥)+Vf& resulting in the approximations of mean and
covariance: y~ g(x) and P, = VfPVf L

In this way the prediction of the state is given by:

3 = fGiou) +
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where F=Vy [, G=Vy f, dy = Eld,], Qp = Fldydf].
The prediction of the observation is given by:

(14a)
(14b)

(15a)
(15b)
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where Hy =V .k, Gy =V b, % =Hy], Ry = E[vgv] 1.

B. Divided difference filter

In [3] Nergaard et al. proposed a new set of estimators
based on derivative free polynomial approximation of
nonlinear transformations using multidimensional exlension
of Stirling’s interpolation formula. This formula is
particularly simple if only first and second order polynomial
approximation are considered:
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where divided difference operators are defined by:
~ 1/ -
Dmf=—(zﬂxpﬂp5p S (%) (17
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0, is a “partial” difference operator:
pr(f)=f(fc+0.5'h-ep)—f(f~0.5-h-ep) (18)
and u » 18 an average operator:
Hof ()= 0.5~(f(£+O.S-h-ep)+f(£H0.5-hvep)) )]

where e, is the pth unit vector.

Applying a stochastic decoupling of the variables in x by
the following transformationz=S5"'x, (5. is the Cholesky
factor of the covariance matrix P, = S8 ), approximation
of mean and covariance of y = f(x) is obtained:
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The interval length A is set equal to the kurtosis of the prior

random variable x . For Gausians it holds 4% =3,
In [3] Nergaard et al. also derived the alternative
covariance estimate:
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This estimate is less accurate than (20). Moreover, for

+

h* <n the last term becomes negative semi-definite with a
possible implication that the covariance estimate 27)
becomes non-positive definite too. The reason why this

estimate is considered here is comparison with the
covariance  estimate  obtained by the Unscented
Transformation described in the next subsection.

C. Unscented Kalman filter

Julier and Uhlman proposed the Unscented

Transformation (UT) [2] in order to calculate the stalistics of
a random variable x propagated through the nonlinear
function y = f(x). The n,-dimensional continuous random
variable x with mean % and covariance P, is approximated
by 2n,+1 sigma poinls (. with corresponding weights
@,, p=01,.2n,:



A=a*(n, +x)-n.for p=12..,n
@, =0.5/(n+ 1)

X, =%, @y =Af(n+d),
X, =X+n+ i “Sxp

X pyn, =X=NNHK S, ) @,y =0.5/(n+2)

where a determines the spread of the sigma points around
X (usually le—-4<a<l) and xeWRis the scaling
parameter, usually set to O or 3—n,[]. s, , is the pth row or
colurmn of the matrix square root of P,

Each sigma point is instantiated through the function f(-)
to yield the set of transformed sigma points % = f(9C,) , and
the mean J of transformed distribution is estimated by:

. 2n, " i X
y"gowp‘-,’f—n_‘_ﬂj(' ( l)gl:(f(x‘ﬂnﬂl Sx:) (22)
+f(E-Vn+1-s.)))

the unscented

The covariance estimate obtained by
transformation is:
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It can be easily verified that for #=+n+ A , the estimates
of mean (20a) and covariance (21) obtained by DDF are
equivalent to the estimates (22) and (23) obtained by UKF.

IIT GAUSSIAN SUM FILTERS IN RNN TRAINING

Application of a weighted sum of Gaussian densities for
approximation of the posterior density was considered for
linear systems with (Gaussian noise but a non Gaussian
distribution of the initial state p(xy) [1]. In [4] the idea was
further developed for nonlinear systems. However, equations
of recursive estimator were derived applying linearization of
system dynamics resulting in a bank of parallel EKF’s.

In this section we derive equations of Gaussian Sum (GS)
filters and consider it in RNN training when noise densities
cannot be approximated by a single Gaussian. As in [4] we
assume that any probability density function can be
approximated sufficiently accurately using finite Gaussian
mixture:

p(x)= 3 PUAY P/ 4) = 3, wN (6 %, P)
i=l i=]

where 4; is the event that the x is Gaussian distributed with
mean X; and covariance P, that is 4, = {x ~ N(X,,F;)}.

24

Events 4i,i=1.,n are mutually exclusive
P{4;4;}=0,Vi# j, and exhaustive > P{4;}=1, and
P{d;}=w;.

A. Gaussian Sum filter equations

To derive GS filter equations we will assume that the
filtering and prediction densities as well as non-Gaussian
noise densities can be represented as finite Gaussian
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mixtures.
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The predictive density is obtained as:
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If we introduce Dy ; to denote a joint event By ; M Apyjs

we have:

3
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since B, ;

(30)
are independent events. Finally, based on

assumptions (25) and (26) we obtain the predictive density as
the finite Gaussian mixture:

e
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where wy; =wd, ;- w;_ ;, and

Yot = Elxe [ yors Disl,
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The posterior state density is obtained as:
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and in a compact form:
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denotes a joint

P(XA/J’M) =

where A4, event Cp. D, and

n; =ng -ng, I=(i—1)-ny + j.Itcan be proved that:
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therefore the posterior density is given by:

(35)
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The recurrence relations (28) and (36) constitute conceptual
solution of nonlinear, non-Gaussian estimation using finite
mixture approximation. When components of a mixture are
Gaussians, we can solve integrals in (28) and (33) applying
the same ideas as in EKF, DDF and UKF. Thus Gaussian
sum filter is implemented as a bank of parallel EKF’s, DDF’s
or UKF’s. The major drawback of proposed algorithm is
exponential growth of the number of components in a

posterior density (36), since nz =y g =n, -(ng ).
To solve this problem, after updating the posterior density
p(x;/vo) we apply a mixture reduction procedure to

prevent exponential explosion of the number of mixture
components.

B. Mixture reduction

We apply the algorithm which clusters the components of the
mixture and replace the cluster with a single Gaussian. The
component of the mixture (36) with largest probability Wi j
is selected as the principal component. All components that
are close to it are clustered, together with the principal
component. Closeness is defined using Kullback distance
between two Gaussains:

Lo golfnsdl | ol o g
D = (e =) (B + BT (3 - )
1 (37)
2 Ezr(jpl“Pz +BP -2

where w., %, and P. are the probability, mean and
covariance of the principal component and w;, X; and P,
are the probability, mean and covariance of the ith
component. A component for which Diz <Tin 15 selected
as a class member. Threshold 7., defines the acceptable
modification of the original distribution (36).

The cluster of components is approximated by a single

Gaussian;

WC = Zwi (383)

iefq
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where /¢ contains the indices of components close to the

principle component.
The clustering procedure continues on the remaining
components of the original mixture. If the number of

859

components after clustering is bellow the user-defined
maximal number N, the mixiure reduction is completed.
Otherwise the minimum distance is incremented
Tinin =Tiin + AT and the clustering procedure is repeated,
AT is selected as a compromise between a number of
iterations required and the possibility of clustering more
components than necessary.

IV EXAMPLES

In this section, we shall give the results of Mackey-Glass
chaotic time series prediction using NARX recurrent neural
networks trained using EKF, DDF, UKF and GS filters.

A. Gaussian noise

In the first example we considered the single step prediction
of Mackey Glass time series corrupted by additive Gaussian
noise with standard deviation equal to 0.2 ( SNR =~ 3dB )

We have used EKF, UKF, DDF, GS_EKF, GS_UKF and
GS_DDF to train NARX recurrent network with 6 recurrent
inputs, 5 hidden neurons and one output (41 adjustable
parameters). After sequential adaptation on 2000 saimples
(presented only once), single step prediction of next N =100
samples is used to calculate Normalized Root Mean Squared
Error (NRMSE):

. -
NRMSE_\/—Z—Z(yk -35)? (40)
TN k=

where o is the standard deviation of clean time series, y is

the true value of sample at time step &, and Jp is a
prediction of NARX RNN. Note that during training only
noisy signal was presented to the network.

In Tablel, we give mean and variace of NRMSE, when
network was trained using UKF, DDF and EKF.

Table 1. NRMSE of NARX_RNN single step prediction

UKF DDF EKF
mean(NRMSE) 0.3321 0.3370 0.3761
var(NRMSE) 0.06 0.04 0.05
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Figure 2. Single step prediction of NARX recurrent network trained
by G8_UKF (Gaussian observation noise — SNR=3 dB)



In Table 2, the results are obtained for GS UKF, GS_DDF
and GS_EKF. All Gaussian sum filters use a four component
Gaussian mixture for state posterior and one component
Gaussian mixture of both process and observation noise.

Table 2. NRMSE of NARX_RNN single step prediction

GS_UKF | GS_DDF | GS_EKF
mean(NRMSE) 03198 | 0.3301 0.3640
var(NRMSE) 0.01 0.05 0.01

B. Non-Gaussian noise

In a second example the additive observation noise was
distributed as a Gaussian mixture given by:

pvi)=a-Nvsmy,of)+(1-a)-N(ve;my, 03) (41)
a=2/3, 02, o7=005,

where my = my =0.4,
o, =0.1.

We have considered a long term - iterated prediction of
Mackey Glass time series. Note that when EKF, UKF and
DDF were applied for training, the observation noise (41)
was approximated with Gaussian noise of the same mean and
variance. While in the first example the performance of EKF,
UKF and DDF was comparable to the corresponding
Gaussian sum filters, in case of non-Gaussian observation

noise they failed in a long term prediction (Figure 3).
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Figure 3, Iterated prediction of NARX recurrent network trained
by DDF (non-Gaussain observation noise)

Performance of Gaussian sum filters for non-Gaussian
noise is documented in Table 3. Figure 4 shows a typical
result of iterated long term prediction for Gaussian sum filter
implemented as a bank of parallel DDF’s. All Gaussian sum
filters use a five component Gaussian mixture for state
posterior, Gausian process noise and two component
Gaussian mixture of observation noise.

Table 3. NRMSE of NARX_RNN iterated prediction

GS_UKF | GS_DDF | GS_EKF
mean(NRMSE) 02005 | 0.1429 | 02317
var(NRMSE) 0.0013 0.005 0.052
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Figure 4. Iterated prediction of NARX recurrent network trained

by GS_DDF (non-Gaussain observation noise)

V CONCLUSIONS

We consider the problem of recurrent neural network
training as the Bayesian state estimation. Proposed algorithm
uses Gaussian sum (GS) filter for nonlinear, non-Gaussian
estimation of network outputs and synaptic weights, We
show that GS filter can be implemented as a bank of parallel
Bayesian filters (EKF’s, UKF’s, DDF’s or other).

The performance of proposed algorithm and other
Bayesian filters is compared in noisy chaotic time series
prediction. In case of Gaussian noise the performances of
Gaussian and Gaussian sum filters in RNN training are
comparable, where as in case of non-Gaussian noise,
Gaussian sum filters are superior.
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