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Abstract. Many data analysis problems involve an investigation
of relationships between attributes in heterogeneous databases,
where different prediction models can be more appropriate for
different regions. We propose a technique of boosting localized
weak classifiers; rather than having constant weights attached
to each of the classifiers (as in standard boosting approaches),
we allow weights to be functions over the input domain. In
order to determine these functions, we identify local regions
having similar characteristics and then build local classification
experts on each of these regions describing the relationship
between the data characteristics and the target class. The idea
of local boosting is that although no single function works well
globally, in any local region a function should be capable of
doing the classification. We performed a comparison with other
well known combining methods using weak classifiers as based
learners, on standard benchmark datasets and we took better
accuracy.

I. INTRODUCTION
Instance-based learners classify an instance by comparing it
to a database of pre-classified examples. The fundamental
assumption is that similar instances will have similar
classifications. The corresponding components of an
instance-based learner are the distance function which
determines how similar two instances are, and the
classification function which specifies how instance
similarities yield a final classification for the new instance
(1].
The nearest neighbor rule becomes less appealing with finite
training samples. This is due to the curse of dimensionality.
Severe bias can be introduced in the nearest neighbor rule in
a high dimensional input feature space with finite samples.
As such, the choice of a distance measure becomes crucial in
determining the outcome of nearest neighbor classification.
The commonly used Euclidean distance measure, while
simple computationally, implies that the input space is
isotropic or homogeneous, However, the assumption for
isotropy is often invalid and generally undesirable in many
practical applications [1].
Local learning [2] can be understood as a general principle
that allows to extend leamning techniques designed for simple
models, to the case of complex data for which the model’s
assumptions would not necessarily hold globally, but can be
thought as valid locally. A simple example is the assumption
of linear separability, which in general is not satisfied
globally in classification problems with rich data. Yet any
classification algorithm able to find only a linear separation,
can be used inside a local learning procedure, yielding an
algorithm able to model complex non-linear class
boundaries.
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We propose a technique of boosting localized weak
classifiers. Usual boosting algorithms are well known to be
sensitive to noise [5]. In the case of local boosting, the
algorithm should handle reasonable noise, and be at least as
good as boosting, if not better. For the experiments, two
weak algorithms of two well known machine learning
techniques: decision trees and rule learners, were used. We
performed a comparison with other well known combining
methods, on standard benchmark datasets and we took better
accuracy for local boosting.

In the next section, we discuss the localized experts, while
current ensemble approaches and work are described in
section 3, In Section 4 we describe the proposed method and
investigate its advantages and limitations. In Section 4, we
evaluate the proposed method on several UCI datasets by
comparing it with standard boosting and other lazy methods.
Finally, section 5 concludes the paper and suggests further
directions in current research.

II. LOCAL WEIGHTED LEARNING

When all training examples are considered when classifying
a new test case, the algorithm works as a global method,
while when the nearest training examples are considered, the
algorithm works as a local method, since only data local to
the area around the testing instance contribute to the class
probabilities. Local methods have significant advantages
when the probability measure defined on the space of
symbolic objects for each class is very complex, but can still
be described by a collection of less complex local
approximations.

When the size of the training set is small compared to the
complexity of the classifier, the learning machine usually
overfits the noise in the training data. Thus effective control
of complexity of a classifier plays a key role in achieving
good generalization. Some theoretical results and
experimental results [18] indicate that a local learning
algorithm (that is learning machine trained on the training
subset) provides a feasible solution to this problem.

Learning based on the training subset has been an exciting
research topic and some important theoretical and
experimental results have been obtained. In fact, local
learning is not a new concept and it has appeared in the early
years of pattern recognition. The obvious example is the k-
nearest neighbor method: given a testing pattern, we estimate
its class from the closest pattern in the training set.

A list of objections to k-nearest neighbor algorithms includes
the following: a) voting used to combine the classes of the
nearest k instances, b) uniform neighborhood shape
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(spherical) regardless of instance location and c) uniform
weight given to all features, instances and neighbors

Our ultimate goal is not to improve the nearest neighbor
algorithm, but to improve classification accuracy by
combining local classifiers. The authors of [7] proposed a
theoretical model of a local learning algorithm and obtained
bounds for the local risk minimization estimator for pattern
recognition and regression problems using structural risk
minimization principle.

In local learning, each local model is trained entirely
independently of all other local models such that the total
number of local models in the learning system does not
directly affect how complex a function can be learned -
complexity can only be controlled by the level of adaptability
of each local model. This property avoids overfitting if a
robust learning scheme exists for training the individual local
model.

The authors of [9] extended the idea of constructing local
simple base learners for different regions of input space,
searching for appropriate architectures that should be locally
used and for a criterion to select a proper unit for each region
of input space. They proposed a hybrid MLP/RBF network
by combining RBF and Perceptron units in the same hidden
layer and using a forward selection to add units until an error
goal is reached. Although the resulting Hybrid
Perceptron/Radial Network is not in a strict sense an
ensemble, the way by which the regions of the input space
and the computational units are selected and tested could be
in principle extended to ensembles of learning machines.

Ill. ENSEMBLES OF CLASSIFIERS

Empirical studies showed that classification problem
ensembles are often much more accurate than the individual
base learner that make them up [5], and recently different
theoretical explanations have been proposed to justify the
effectiveness of some commonly used ensemble methods
[15]. In this work we propose a generative combining
method and for this reason this section presents the most
well-known generative methods for building ensembles of
classifiers in the literature. Generative ensemble methods
generate sets of base learners acting on the base learning
algorithm or on the structure of the dataset and try to actively
improve diversity and accuracy of the base learners.

Starting with bagging [8], we will say that this method
samples the training set, generating random independent
bootstrap replicates, constructs the classifier on each of these,
and aggregates them by a simple majority vote in the final
decision rule, Therefore, taking a bootstrap replicate one can
sometimes avoid or get less misleading training objects in the
bootstrap training set. Consequently, a classifier constructed
on such a training set may have a better performance.
Another method that uses different subset of training data
with a single learning method is the boosting approach [12].
It assigns weights to the training instances, and these weight
values are changed depending upon how well the associated
training instance is learned by the classifier; the weights for
misclassified instances are increased. Thus, re-sampling
occurs based on how well the training samples are classified
by the previous model. Since the training set for one model

depends on the previous model, boosting requires sequential
runs and thus is not readily adapted to a parallel
environment. After several cycles, the prediction is
performed by taking a weighted vote of the predictions of
each classifier, with the weights being proportional to each
classifier’s accuracy on ifs training set.

AdaBoost is a practical version of the boosting approach
[12]. There are two ways that Adaboost can use these
weights to construct a new training set to give to the base
learning algorithm. In boosting by sampling, examples are
drawn with replacement with probability proportional to their
weights, The second method, boosting by weighting, can be
used with base learning algorithms that can accept a
weighted training set directly. With such algorithms, the
entire training set (with associated weights) is given to the
base-learning algorithm.

MultiBoosting [19] is another method of the same category
that can be considered as wagging committees formed by
AdaBoost. Wagging is a variant of bagging; bagging uses
resampling to get the datasets for training and producing a
weak hypothesis, whereas wagging uses reweighting for each
training example, pursuing the effect of bagging in a
different way.

In [17] another meta-leasner (DECORATE, Diverse
Ensemble Creation by Oppositional Relabeling of Artificial
Training Examples) is presented that uses a learner (one that
provides high accuracy on the training data) to build a
diverse committee. This is accomplished by adding different
randomly constructed examples to the training set when
building new committee members. These artificially
constructed examples are given category labels that disagree
with the current decision of the committee, thereby directly
increasing diversity when a new classifier is trained on the
augmented data and added to the committee.

IV. PROPOSED ALGORITHM
It is known that boosting is an effective technique for
improving prediction accuracy in many real life datasets [5].
However, previous researches indicated that in
heterogeneous databases, where several homogeneous
regions exist, boosting does not enhance the prediction
capabilities as well as for homogeneous databases [16]. In
such cases our experiments indicate that it is more useful to
have several local experts responsible for each region of the
dataset.
Local leamning typically depends on the notion of
“neighborhood”. The neighborhood can be based on some a-
priori measure of locality such as the Euclidean distance in
input space.
The proposed algorithm builds a model for each point to be
estimated, taking into account only a subset of the training
points. This subset is chosen on the basis of the preferable
distance metric between the testing point and the training
point in the input space. For each testing point, a boosting
ensemble of a weak classifier is thus learned using only the
training points lying close to the current testing point.
Generally, the proposed ensemble consists of the four steps
(see Fig 1)
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[) Determine a suitable distance metric.

2) Find the k nearest neighbors using the selected distance metric.

3) Apply boosting to the used simple classifier using as training
instances the k instanccs

4) The answer of the boosting ensemble is the prediction for the
testing instance.

Fig. 1. Local Boosting ensemble

The proposed ensemble has some free parameters such as the
distance metric. In our experiments, we used the most well
known -Euclidean similarity function- as distance metric. For
two data points, X = <xy, X3, X3, ..., Xp1> and Y = <yy, v2, ¥3,
.ery Va1, the Euclidean similarity function is defined as

n-l
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We also used k=50 since about this size of instances is
appropriate for a simple algorithm to built a precise model
[11]. The performance of ADABoost.M1 has been shown to
exceed or meet that of various other boosting algorithms
[12], thus making it a good choice for this research. We used
10 iterations for the boosting process in order to reduce the
time need for classification of a new instance.
Our method shares the properties of other memory-based
classification methods such as no need for training and more
computational cost for classification. Besides, our method
has some desirable properties, such as better accuracy and
confidence interval.

V. EXPERIMENTS

We have experimented with 27 datasets from the UCI
reposilory [4]. These datasets cover many different types of
problems having discrete, continuous, and symbolic
variables. Some datasets have missing values, and some have
a mixture of all the above. The datasets are listed in Table 1.

TABLE 1. The used datasets

Datasets Instances Categ. Numer. | Classes
fcatures featurcs

audiology 226 69 0 24
autos 205 10 15 6
Balance 625 0 4 3
breast-cancer 286 9 0 2
breast-w 699 0 9 2
Colic 368 15 7 2
Credit-rating 690 9 6 2
Diabctcs 768 0 8 2
glass 214 0 9 6
haberman 306 0 3 2
heart-¢ 303 7 6 5
heart-h 294 7 6 5
heart-statlog 270 0 13 2
hepatitis 155 13 6 2
ionosphere 351 34 0 2
iris 150 0 4 3
labor 57 8 8 2
lympho-therapy 148 15 3 4
monk] 124 6 0 2
monk? 169 6 0 2
monk3 122 6 0 2
primary-tumor 339 17 0 21
sonar 208 0 60 2
titanic 2201 3 0 2
vehicle 846 0 18 4
vote 435 16 0 2
wine 178 0 13 3

For the experiments we used the two most common weak
machine leamning algorithms OneR [13] and Decision stump
[14]. In order to calculate the classifiers’ accuracy, the whole
training set was divided into ten mutually exclusive and
equal-sized subsets and for each subset the classifier was
trained on the union of all of the other subsets. Then, cross
validation was run 10 times for each algorithm and the
median value of the 10-cross validations was calculated. It
must be mentioned that we used the free available source
code for most of the algorithms by [21] for our experiments.

A.  Using DS as base classifier
Decision stump (DS) are one level decision trees that classify
instances by sorting them based on feature values [14]. Each
node in a decision stump represents a feature in an instance
to be classified, and each branch represents a value that the
node can take. Instances are classified starting at the root
node and sorting them based on their feature values. At worst

a decision stump will reproduce the most common sense

baseline, and may do better if the selected feature is

particularly informative,

Subsequently, we compare the

methodology with:

o K-nearest neighbors using k=3 (most common used
number of neighbors), as well as k=50 because the
proposed algorithm uses 50 neighbors. In addition, we
tested Kstar: another instance-based learner which uses
entropy as distance measure [10].

Local weighted DS using 50 instances
Bagging DS, Boosting DS and MultiBoost DS (using 25
sub-classifiers)

e DECORATE DS
In the following tables, we represent with “v” that the
proposed ensemble looses from the specific algorithm. That
is, the specific algorithm performed statistically better than
the proposed according to t-test with p<0.05, Furthermore,
“*” indicates that proposed ensemble performed statistically
better than the specific classifier according to t-test with
p<0.05. In all the other cases, there is no significant
statistical difference between the results (Draws). In the last
rows of the tables one can also see the aggregated results in
the form (a/b/c). In this notation “a” means that the proposed
ensemble is significantly less accurate than the compared
algorithm in a out of 27 datasets, “c” means that the proposed
algorithm is significantly more accurate than the compared
algorithm in ¢ out of 27 datasets, while in the remaining
cases (b), there is no significant statistical difference belween
the results,

In the last raw of the Table 2 one can see the aggregated

results, The presented ensemble is significantly more

accurate than single DS in 18 out of the 27 datasets, while it
has significantly higher error rate in none dataset. What is
more, the proposed ensemble is significantly more accurate
than 3NN and 50NN in 4 and 11 out of the 27 datasets,
respectively, whilst it has significantly higher error rate in
one and 5 datasets. Likewise, the proposed ensemble is
significantly more accurate than local weighted DS and Kstar
in 3 and 6 out of the 27 datasets, whilst it has significantly

proposed ensemble
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higher error rate in none and two datasets, respectively. In
addition, local boosting is significantly more accurate than
Bagging DS in 14 out of the 27 datasets, whilst it has
significantly higher error rate in none dataset. Furthermore,
Multiboost DS and Decorate DS have significantly lower
error rates in 2 and none out of the 27 datasets than the

proposed ensemble, respectively whereas they are
significantly less accurate in 11 datasets. Adaboost DS has
significantly lower error rates in | out of the 27 datasets than
local boosting, whereas it 1s significantly less accurate in 9
datasets.

TABLE 2. Comparing Local boosting DS with instance based classifiers and other ensembles that use DS as base learner

Datasets Locsl B0t Kstar 3NN Local DS DS soNN  Bpost Bagging Multhoost - Decorate
andiology 73.12 80.32v  67.97* 72.68 4646 %  3595%  4646*  46.46* 46.46 * 46.46 *
autos 75.49 7201 6723 % 74.82 449 *  48.18* 449 *  4495% 449 * 5181 %
balance-scale 84.82 88.72v 8674 v 84.16 56,72 * 89.01v 7177 * 68.21* 7177 * 81.25*
breast-cancer 72405 73.73 73.13 72.68 69.27 70.75 71.55 7338 7176 75.18
breast-w 95.9 95.35 96.61 96.4 9233 * 959 95.28 92.56 * 95.05 95.78
colic 78.91 75.71 80.95 80.87 81.52 84.04 v 82.72 81.52 82.9 82.03
credit-rating 84.94 79.1 * 8496 83.61 85.51 86.16 85.57 85.51 85.39 85.28
diabetes 73.77 70.19*  73.86 732 718 74.68 75.37 72.45 75.19 76.09
Glass 70.39 7531 70.02 70.58 4489%  56.16%  4489* 4508 * 44,89 * 53,12*
habcrman 68.9 70.27 69.77 69.81 71.57 7291 74.06 v 73,07 738V 7161
heart-c 80.4 75.18*  81.82 78.29 72.93 * 81.58 83.11 75.26 83.54 72.43 %
heart-h 79.06 77.83 82.33 79.17 81.78 83.98v 8242 81.41 81.91 81.78
heart-statlog 78.15 7644 7911 76.33 72.3 83.74v 8181 7533 82.89 v 81.48
hepatitis 84.45 80.17  80.85 83.04 77.62 * 79.38 81.5 80.61 82.21 80.02
ionosphere 90.01 8464+ 86.02* 88.24 §2.57*  71.65* 92.34 82.66 * 90 90.4
Iris 94.47 94.67 952 94 66.67 * 90.53 95,07 68.87 * 94.73 93.93
Labor 90.47 92.03 92.83 85.3 7877+ 6467 % 90.57 81.97 89.97 91.07
lymphography 84.6 85.08 81.74 76.67* 7531 % 80.59 75.44% 745 74.96 * 7225 *
monk] 86.38 8027  78.97 7722 % 7341* 598 *  69.79* 7341+ 7037 * 70.94 *
monk2 54.08 58.35 54.74 4875 59.58 62.13v  53.99 61.13 54.19 61.95
monk3 90.68 8622  86.72 93.44 76.01% 8246+ 90.92 82.41 92.3 93.45
Primary-tumor 4322 3802  44.98 43.22 2891 * 3926  28.91*  2891* 28.91 * 29.09 *
sonar 83.89 8S.11 83.76 76.62 * 7225%  68.25% 81.06 73214 7754 % 72.91 *
Titanic 79.05 7756* 789 79.05 776 *  7756%  77.83 77.6 * 77.62 * 77.6 *
Vehicle 70.98 70.22 7021 69.58 3981*  6347*  39.81*  4014% 39.81 * 4735
Vote 96.02 9322*% 93,08 * 95.4 95.63 9041% 9641 95.63 95.63 95.59
Wine 97.47 98.72 95.85 96.79 5791* 9646  91.57* 8627 91.22* 96.45
WID/L 21196 1/22/4 0/24/3 0/918  S/11/11 1179 0/13/14 2/14/11 0/16/11
:c”;’:f; 80,09 79,05 79,20 78,52 68,67 73,69 74,26 71,20 74,07 75,09

To sum up, the performance of the presented ensemble is
more accurate than the other well-known ensembles that use
only the DS algorithm. The proposed ensemble can achieve
an increase in classification accuracy about 17% compared to
simple DS. The average relative accuracy improvement of
the proposed methodology is from 1.5% to 12.5% in relation
to the remaining methods. This indicates that it is possible to
obtain a feasible solution to problems of pattem
classification in the real world by local learning because
approximating global target function is hard given that
usually not enough training samples are available.

B. Using ONER as base classifier
OneR [13] is a simple classifier that extracts a set of rules
based upon a single attribute. OneR shows that it is easy to
get reasonable performance on a variety of classification
problems by examining only one attribute.
Subsequently, we compare the proposed
methodology with:
e K-nearest neighbors using k= 3, 50 as well Kstar:
another instance-based learner which uses entropy as
distance measure [10].

ensemble
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o Local weighted OneR using 50 instances

e Bagging OneR, Boosting OneR and MultiBoost OneR
(using 25 sub-classifiers)

o DECORATE OneR

TABLE 3. Comparing Local buosting OneR with instance based classifiers and other ensembles that use OneR as base learner

In the last raw of the Table 3 one can see the aggregated

results.

Datasets Local Boost Kstar 3NN Local OneR S0NN Boost Bagging Multiboost Decorate
OneR OneR OneR OneR OneR OneR
audiology 74.53 8032v  67.97* 72.28 46.46 * 3595 46,46 * 46.46 * 46.46 * 46.46 *
autos 80.87 72.01* 6723 * 76.49 61.77 * 48.18 * 65.47 * 65.26 * 66.06 * 70.51 *
balance-scale 88.3 88.72 86.74 87.36 57.09 * 89.01 72.81* 67.95* 72.84* 60.94 *
breast-cancer 72.58 73793 73.13 72.16 6691 * 70.75 69.49 68.45 70 66.87 *
breast-w 96 95.35 96.61 96.3 92.01* 95.9 95.55 92.81 * 95.45 92,38 *
colic 80.05 75.71 80.95 81.17 81.52 84.04 81.17 81.52 80.32 78.15
credit-rating 82.45 79.1 84,96 83.59 85.51 86.16 v 81.86 85.51 81.87 8551
diabetes 70.2 70,19 7386v 69.76 71.98 74.68 v 69.91 72.08 69.95 71.98
Glass 71.7 75.31 70.02 68.52 56.84 * 56.16 * 56.56 * 60.85 * 56.81* 58.76 *
haberman 65.73 70.27 69.77 68.39 72.53 v 7291v 71.65v 72.19v T.74v 7197 v
heart-c 77.33 75.18 81.82 79.23 72.53 81.58 72.61 76.08 76.24 72.83
heart-h 78.04 77.83 82.33 79.14 80.69 8398 v 76.59 80.49 77.67 80.36
heart-statlog 77.78 76.44 79.11 76.3 71.26 83.74v 73.59 75.59 75.26 74.93
hepatitis 82.62 80.17 80.85 82.02 82.05 79.38 77.41 82.33 78.73 80.94
ionosphere 90.09 84.64* 86.02* 88.21 82,59 * 71.65* 88.43 85.04 * 88.91 85.59
Iris 93.33 94.67 95.2 94 93.53 90.53 93.67 93.6 94.53 93.47
Labor 90.2 92.03 92.83 8247 % 72.97* 64.67 * 89.37 77.93 * 87.53 79.57 *
lymphography 84.63 85.08 81.74 78.31* 74.77* 80.59 79.83 74.57 * 79.47 70.66 *
monk] 85.35 80.27 78.97 80.78 7341 * 39.8 * 70.35 * 7341 % 70.44 * 74.35 *
monk2 62.36 58.35 54.74* 56,74 58.35 62.13 55.36 38.76 54.73 57.22
monk3 90.07 86.22 86.72 92.15 77.88 * 82.46* 90.67 157" 91.82 93.45
Primary-tumor 44,04 38.02*% 4498 44.57 27.74 * 39.26 27.38 * 27.05* 27.25* 27.88 *
sonar 77.85 85.11 83.76 73.57 62.12* 68.25 " 6543 * 70.59 65.69 * 62,44 *
Titanic 78.97 77.56 * 78.9 79.03 776 * 77.56 * 77.74 776 * 77.64* 776 *
Vehicle 70.89 70.22 70.21 67.37* 52.36* 63.47* 51.63* 52.85* 5145* 52.71*
Vote 95.79 93.22* 93.08* 95.52 95.63 90.41 * 96.62 95.63 95.91 95.63
Wine 96.46 98.72 95.85 94.83 77.93 * 96.46 92.07 79.38 * 89.7 * 79.15*
W/D/L 1/21/5 1/21/5 0/24/3 1/10/16 511/1 1/18/8 1/12/14 1/16/10 171214
Average 79,93 79,05 79,20 78,53 71,33 73,69 73,69 73,02 73,87 72,68
accuracy

The presented ensemble is significantly more accurate than
single OneR in 16 out of the 27 datasets, while it has
significantly higher error rate in one dataset. What is more,
the proposed ensemble is significantly more accurate than
3NN and 50NN in 5 and 11 out of the 27 datasels,
respectively, whilst it has significantly higher error rate in
one and 5 datasets, Likewise, the proposed ensemble is
significantly more accurate than Kstar and local weighted DS
in 5 and 3 out of the 27 datasets, whilst it has significantly
higher error rate in I and none dataset, respectively. In
addition, the Bagging OneR is significantly more accurate
than local boosting in 1 out of the 27 datasets, whilst it has
significantly higher error rate in 14 datasets. Furthermore,
Adaboost OneR and Multiboost OneR have significantly

lower error rates in 1 out of the 27 datasets than proposed
ensemble, whereas they are significantly less accurate in 8
and 10 datasets, respectively. Decotate OneR has
significantly lower error rates in 1 out of the 27 datasets than
local boosting, whereas it is significantly less accurate in 14
datasets.

To sum up, the performance of the presented ensemble is
more accurate than the other well-known ensembles that use
only the OneR algorithm. The proposed ensemble can
achieve an increase in classification about 12% compared to
simple OneR. The average relative accuracy improvement of
the proposed methodology is from 1% to 10% in relation to
the remaining methods.
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VI. CONCLUSION
Local memory-based algorithms defer processing of the
dataset until they receive request for information (e.g.
prediction or local modeling). A database of observed input-
output data is always kept and the estimate for a new
operating point is derived from an interpolation based on a
neighborhood of the query point. Local techniques are an old
idea in time series prediction [3].
Lazy classifiers are particularly useful for classification on
data streams. In data streams, new data keep arriving, so
building a new classifier each time can be very expensive. In
addition, the multidimensional data is sometimes feature-
space heterogeneous so that different features have different
importance in different sub-areas of the whole space.
Local learning can reduce the complexity of component
classifiers and improve the generalization performance
although the global complexity of the system can not be
guaranteed to be low. In this paper we propose local boosting
and our experiment for some real datasets shows that the
proposed combining method outperforms other well known
combining methods as well as any individual classifier.
Usual boosting algorithms are well known to be sensitive to
noise [5]. In the case of local boosting, the algorithm should
handle reasonable noise, and be at least as good as boosting,
if not better. Due to the encouraging results obtained from
these experiments, we can expect that the proposed
combining method can be successfully applied to the
classification task in the real world case with more accuracy
than the traditional data mining approaches.
The benefit of allowing multiple local models is offset by the
cost of storing and querying the training dataset for each test
set instance which means that lazy learners do not scale well
for the large amount of data associated with many
applications. Local weighted learning algorithms must often
decide what instances to store for use during generalization
in order to avoid excessive storage and time complexity. By
removing a set of instances from a database the response
time for classification decisions will decrease, as fewer
instances are examined when a query instance is presented.
This objective is primary when we are working with large
databases and have limited storage.
In a following work we will focus on the problem of
reducing the size of the stored set of instances while trying to
maintain or even improve generalization accuracy by
avoiding noise and overfitting. In [6] and [20] can be found
numerous instance selection methods that can be combined
with local boosting technique.
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