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Abstract—The controllability of the Kappa number in the
continuous digester is considered. The Kappa number is one
quality measure of the pulp cooking process, but usually the only
available on-line measurement. It is a measure of the residual
lignin content in the pulp. The cooking of the pulp mainly takes
place in the digester, where the significant part of the lignin is
removed from the chips.

The control of the Kappa number is carried out mainly in the
top of the digester; therefore it is important to get some indication
of the quality (Kappa number) beforehand. The residence time
from the top of the digester to the bottom of the digester, where
the on-line Kappa number is measured, is about 300 minutes.
The Kappa number is predicted in the top of the digester using
SOM and fuzzy clustering. The data is collected from industrial
conventional continuous digester. Good resunlts were achieved
using the hybrid system,

I. INTRODUCTION

Modeling and identification are important parts of a good
control design, supervision and fault diagnosis systems [1].
Industrial processes are usually highly non-linear and very
difficult or impossible to make good models with conventional
modeling techniques. This kind of systems can be called
complex systems. Pulp and paper processes are examples of
this kind of systems.

Modeling and identification of complex systems may be
carried out by e.g. fuzzy logic and neural networks. Fuzzy
modeling can be implemented by Mamdani- [2] and Sugeno
models [3]. Sugeno models have a fuzzy premise part and a
piecewise linear consequent part while in Mamdani models
both parts are fuzzy. If there are many inputs in the system,
identification of these models needs a lot of calculations, but
new methods have been proposed to overcome this problem,

Many of these methods are based on fuzzy clustering [1],
[4]: Sugeno-Yasukawa [5] developed Mamdani models, Kim
et al. [6] developed a method which collected good parts from
Sugeno & Yasukawa [5] and obtain Takagi & Sugeno [3]
models. The use of fuzzy clustering in the partitioning makes
identification easier and better results can be achieved.

The studied process is a conventional continuous digester.
Most of the kraft pulp is produced in the continuous digesters
[7]. In a typical chemical pulping process (Fig. 1) the pre-
treated and penetrated wood chips are fed into the impregna-
tion vessel and pulp digester where lignin is removed from the
chips with the aid of the chemical reactions. Thus the wood
fibres are separated from each other. The kraft pulping process
has been widely investigated during recent years and the
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Fig. 1. Impregnation vessel and continuous Kamyr digester.

optimal cooking conditions in the chip scale are well known.
The usual problem however is that the optimal conditions in
the digester scale cannot be ensured. Reasons for this are
the large dimensions of the process equipments, inadequate
measurements and residence time of several hours.

The quality of the pulp is characterized e.g. with pulp’s
strength, viscosity, yield and Kappa number. The Kappa num-
ber indicates the residual lignin content of the pulp in the blow
line and the main variables affecting it are the temperatures
and chemical concentration in the digester. The control of
the Kappa number is very important part of the continuous
cooking process. The steady blow line Kappa number enables
the optimized chemical consumption in the following parts of
the fibre line. The quality of the pulp has a major effect on
the quality of the entire fibre line and of the final paper. [8].

The Kappa number is one of the most important quality
indicators of the cooking process. Therefore the control of
the Kappa number is essential. In the conventional cooking
the main control actions are carried out in the top of the
digester, but the on-line measurement of the Kappa number
is located in the bottom of the digester. The residence time
between these points is about 300 minutes. It is obvious that
with the prediction of the Kappa number in the top of the
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digester more information can be achieved and control actions
can be executed more rapidly than without any prediction. The
prediction can give new information of the changes and the
direction of the change earlier.
The main variables affecting to the Kappa number are
the temperature, the alkali concentration and the cooking
(residence) time. The temperature is controlled at the top of the
digester using steam temperature. The alkali (white liquour)
is added into the feed circulation flow of the impregnation
vessel and digester. The alkali is impregnated into the chips
in the impregnation vessel, before the cooking operation takes
place in the digester. The air is removed from the chips before
impregnation vessel in order to impregnate the chips better
with the effective alkali. The lignin is partly removed in the
impregnation vessel (I1-12 in the Fig.1), due to the quite high
temperature and alkali addition in the feed of the impregnation
vessel. The main part of lignin removal occurs in the upper
part of the digester, which is called the cooking zone (Dl-
D4 in the Fig. 1) or bulk zone. The pulp is washed in the
counter-current washing zone (D5 and D6 in the Fig.1).
The Kappa number is modeled or predicted in several
studies, e.g. [9],[10],[11],[12] and [13]. Neural network trained
with back propagation learning rule was used in Dayal [9]. In
Musavi et al. [10] radial basis function neural network model
was constructed. They used neuro-fuzzy system in the Kappa
number prediction in Musavi et al. [11]. Gustafson’s Kappa
number model [13] is used in the real-time Kappa number
modeling in Rantanen et al.[14]. The prediction of the Kappa
number using gray-box approach is considered in [15].
Table 1. Variables of the system,
Variables Unit
Feed alkali concentration to the digester g/l
Temperature at the top of the digester K

" Production rate at the top of the digester adt/d
Kappa number at the top of the digester
Kappa number at the blow line

In this study Kappa number is predicted at the top of the
digester using the main variables affecting the Kappa number.
The inputs and output of the system are presented in the Table
I. The input variables in the combined system are the same
as in Gustafson’s Kappa number model, There are 4 inputs:
feed alkali concentration to the digester, the temperature and
production rate at the top of the digester. The production rate
is used as a residence time of the system. These variables are
measured on-line. The sampling time for the temperature and
production rate is one minute and for the alkali concentration
20 minutes. Also the Kappa number at the top of the digester
is used as an input of the model. This lignin removal in the
impregnation vessel is calculated using Gustafson’s Kappa
number model [13] in the initial phase. Kappa number is a
measure of the lignin content. The rate equation for the initial
phase delignification is:

dL = kyye(17:3-8760/T)

dt
where L is the lignin content at time t
ki is a species specific constant.
T is temperafure.

(D

The monitoring of the process and prediction of the Kappa
number is implemented by combination of the SOM and fuzzy
clustering. The quantization error is used in the coloring of the
trends of the input measurements and the predicted output, The
traffic light colors are used as in Ahvenlampi et al. [16]. If the
system is in normal process state the signal is green. The slight
deviation from the normal operation point is indicated using
yellow color and very big changes are colored with red. The
final prediction model is carried out with Gustafson-Kessel
fuzzy clustering model. Good results were achieved using the
system.

Structure of the paper is following. Used methods are
introduced in chapter TI. Results are considered in chapter [11.
Discussion and conclusions presented in chapters IV and V.

II. USED METHODS

Fuzzy clustering methods can be used in modeling, identi-
fication and pattern recognition [17]. In this section several
objective functions used for Takagi-Sugeno model identifi-
cation, usually minimized by fuzzy clustering methods, are
presented. Also SOM and combined clustering system are
presented. Data to be classified in ¢ clusters is arranged in
a vector Z = {21, z2,..., 2y }. In this study the consequent
parameters for Sugeno models are estimated using weighted
least squares.

A. Fuzzy c-means

Fuzzy c-means is a widely used algorithm for fuzzy identi-
fication. The FCM cost function is usually formulated as [17]:

c N
JZ:U,C) =)

(.u'ik)m D?k: (2)
i=1k=1

where C = {cy, ...,c.} are the cluster centers (prototypes)
to be determined, U = [u;,] is a fuzzy partition matrix [17]

D%, = (2 — ;)" B (2 — ci) (3)

is a distance (norm) defined by matrix B (usually the iden-
tity matrix), and m is a weighting exponent which determines
the fuzziness of the resulting clusters.

B. Gustafsson-Kessel algorithm

Gustafsson-Kessel algorithm [18] (Appendix A) is the
mostly used extension of the FCM in identification [1]. In this
method, norm can be different with every cluster and method
has the advantage of looking for variable size hyper ellipsoids.
New distance to use in (2) becomes:;

D2 = (2o — i)’ Bi(2k — ci) )

In this way, quasi-linear behaviours of the existing operating
regimes are detected quite correctly. Improved covariance
estimation for Gustafson-Kessel algorithm has been introduced
in [19].
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C. Number of the clusters

Finding the correct number of the clusters is one of the
main problems of the clustering. There are many methods
which are used in this problem, see e.g. [1], [20] and [21].
If there is a slight error in the choice of the number of the
clusters, it can cause the detection of the clustering structure
very difficult. The search of the right number of the clusters
is the key element of the cluster analysis and it might be the
most important question concerning all clustering algorithms.

Fuzzy hypervolume [21] is calculated using following equa-

tion
(&)

Fry = [det (7)]"/? (5)

=1

D. SOM

The SOM [22] (Appendix B) is unsupervised artificial
neural network. The network is normally two-dimensional
mapping / projection of the data group. The visualization of
the map is easier in the two-dimensional map. In the training
of the SOM network data points are sequentially introduced to
the SOM. In each iteration, the SOM neuron, which is closest
to the input unit is selected with the equation (5). This unit is
the Best Matching Unit (BMU) or winner.

ll2 = me|| = min {[|z — m|} (6)

The weight vectors are updated using following formula.
Only the weight vectors, which are inside the neighborhood
radius, are updated.

m; (E+ 1) = m; (£) + hes (2) [2 (£) — mi ()] (7

E. Clustering and fault diagnosis system

The clustering and fault diagnosis system is formulated with
the combination of SOM and fuzzy clustering algorithm. The
SOM is used as a first clustering method [23] and a fault
diagnosis tool in the system.

First the SOM is trained with the normal operation data,
which is normalized between [0,1]. The inputs to the system
are the temperature, alkali content, production rate and Kappa
number at the top of the digester. The output is the Kappa
number at the blow line of the digester. The SOM codebook
matrix (50 times 40 matrix) is used as input data for fuzzy
clustering identification. When the clustering and fault diag-
nosis system is formulated, the validation data is put through
the SOM network and the best matching unit is found. The
best matching units are used with the fuzzy clustering model.
The quantization errors are used in the coloring of the trends
of the measured inputs and the predicted output. The size of
the error is used in the color-coding. In normal process state
the color code is green. Yellow color is used in the slight
deviations from the normal operation and very big changes
are colored with red color code. The structure of the system
is illustrated in the Fig. 2.
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Fig. 2. Clustering and fault diagnosis system.

III. MAIN RESULTS

In this study the Kappa number is predicted in the conven-
tional digester. The clustering and fault diagnosis system is
combined with the SOM and fuzzy clustering. The modeling
data (about 30 000 data points) was normal operation data
from the industrial continuous digester. The outliers and faulty
measurements were filtered out from the data. The inputs were
temperature, alkali, Kappa number and production rate at the
top of the digester. The output is the predicted Kappa number
at the bottom of the digester. The system was validated with
data from the same industrial digester, but from different time
periods.

The size of the SOM network structure was 50 times 40.
The SOM codebook vector (2000 neurons) was an input data
for the fuzzy clustering model. Used fuzzy clustering method
was Gustafson-Kessel algorithm. The fuzzy clustering model
was divided into 4 local models (clusters) according to fuzzy
hybervolume [21].

Fault diagnosis phase uses different size quantization errors
to indicate the deviations from the normal operation points.
Thus, this information is used in the coloring of the Kappa
number prediction trend with the colors (green, yellow, red).
In the Figs. 3 and 4 are shown the situations where the
errors deviate and the trends have changing colors. In these
figures the deviations are caused by the grade changes and the
shutdown. In the Fig. 3 is two grade changes in the points 700
and 3500. In the Fig. 4 the grade changes are in the points
600 and 2900. The shutdown can be seen in the Fig. 4 in the
point 3800.

In the Figs. 5 and 6 is a situation where the system is not
nommal. There is grade changes in the points 450 and 3250.
The slight deviation can be seen in the point 2750 and it can
be seen from the both Figs. 5 and 6, where the trend color is
yellow and also red. Same kind of example is illustrated in the
Figs. 7 and 8, where the grade changes are at the points 500
and 3750. The operational failure is in the point 2450, which
has been identified by the system.

The validation results of the clustering and fault diagnosis
system (CFS) and least squared (LS) method are presented in
the table IL.

Table II. MSE for the validation periods 1 and 2.

Prediction method Period 1 Period 2
LS 683052  7.9574
CFS 54703 5.4209
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Fig. 3. Kappa number prediction with the color-coding. The grade changes
are interpreted as faulty operation. Solid blue line is the delayed on-line
measurement of Kappa number at the blowline (Fig. 1) of the digester and
colored (green-yellow-red) dotted line is the predicted Kappa number at the
top of the digester.
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Fig. 4. The coloring of the grade changes and shutdown.

[V. DISCUSSION

The sampling interval of the on-line Kappa number mea-
surements is about half an hour. Hence it is useful to get
also continuous information of the quality properties. The
control of the Kappa number is carried out mainly in the top
of the digester, therefore it is important to get indication of
the quality (Kappa number) beforehand to execute necessary
control actions soon enough. The residence time from the top
of the digester to the blow line of the digester, where the
on-line Kappa number measurement is located, is about 300
minutes.

In this study hybrid system for the monitoring of the
process and prediction of the Kappa number in the blow line
of the digester is constructed and validated. The system is
implemented with combination of SOM and fuzzy clustering
model.

As shown in the Figs. 3-8, the results of the fault diagnosis
and clustering system are very accurate. The proposed method
is suitable for the optimisation and the fault diagnosis of the
kraft cooking process. In the case of major process changes
the adjustment and verification of the model parameters into

Temparature at the 1op of the digester

Nka“ogonnantglion al tga tnp uPthe EF astar

4000

] 500

2 i
PEnIHu:tlnn ram aazﬂe tnp g‘j &’e dlgaslar H00; 4000

g{_fw

appa numE(ir at %ha top n%sge dngaslar

] 300

VA

1500 2000 2500 3000 3500 4000

" i
1] 500 1000

Fig. 5. Input measurements colored with color-coding results from the
quantization errors (Period I).

the optimal form is quite easy.

Fault diagnosis is carried out using the quantization errors
in the coloring of the trends of the input measurements and
predicted Kappa number. In the Figs. 3-8 quite big deviations
are only colored. Thus, the system is not too sensitive to small
deviations. The error size can be used as a tuning factor to
the system. The color changing size can be small, if every
deviation is desired to be shown and if only big disturbances
are needed to be shown the tuning factor can be bigger.
The color can be used to observe the failures in the input
measurements or deviation from the good operation points.
Yellow and red colors indicate also that the prediction may be
inaccurate,

The method will be tested also with the Lo-Solids cooking
and the possibility to implement the system into the automa-
tion system is considered. The hybrid system will be used
also as a fault diagnosis and redundant system for Gustafson’s
Kappa number model.

V. CONCLUSIONS

The applicability of SOM and fuzzy clustering approach
in the controllability of Kappa number was considered. The
results showed the usability of the combined hybrid system
in the monitoring of the process and prediction of the Kappa
number.
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Fig. 6. Predicted kappa number and the quantization error at the same time
period as the input measurements in the Fig. 5.
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APPENDIX A

Process of Gustafsson-Kessel algorithm:
Step 1: Compute the cluster centres

% (.U:G_l))m EN
) _ ik .
t z:(“‘”yn’lszsc
Hig

Step 2: Compute fuzzy covariance matrix:

Kappa number prediction at the top of the digester
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Fig. 8. Predicted kappa number and the quantization error at the same time
period as the input measurements in the Fig. 7.

5 ()" (=) (o)

F‘ = k=1
‘ 3 ()"

B =p,det ()" FTL1<i<C

Step 3: Compute the distances:

D? = (z —ci)T{zk—ci),l <i<C,1<k<N
Step 4: Update the partition matrix:
L 1
iy ==
Y. (Dir/Dye)* 7V
i=1

iterate until ||U(I) - U(I‘l)” < €.
APPENDIX B

The training of the SOM network is following

Step 1: Give initial values for neighborhood radius N(t) and
learning rate

Step 2: Choose the steps K

Step 3: Choose one vector from the learning data x

Step 4.: Find ¢, BMU (best matching unit) from the
initialized network, which distance is closest to the input
vector z. Euclidian distance is used.

|z = mq|| = min {||z — m|}

Step 5: The updating of the weight vectors. Only the weight
vectors, which are inside the neighborhood radius, are updated.

ma (£ + 1) = mq (£) + hoi (£) [2 (8) — ma (2)]

Step 6: Sett =t + 1. If t = K, stop. Else go to step 3.
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