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Abstract - An inverse method is developed in order to estimate
virtual variables (internal microstructure) of a material from
compression tests. The direct model used to simulate
mechanical properties of the materials is a hybrid type which
consists of physical and data driven (neuro-fuzzy)
components, It predicts the material properties and internal
microstructure during hot deformation. For compression and
temperature treatments, any model output of a mechanical
test can be computed and compared with experimental data. A
Gauss-Newton algorithm is implemented to solve the least-
squares algorithms associated with the inverse problem. The
optimisation module is coupled with semi-analytical sensitivity

analysis. The technique developed will facilitate the design of

optimal experimentation for model refinement and knowledge
management,

Keywords - Parameter estimation, semi—physical model, neuro-
fuzzy models, confidence intervals, mechanical tests, knowledge
management,

1. INTRODUCTION

Numerical simulation of metal-forming processes
requires internal microstructural data such as the subgrain
size and orientation. Therefore, the identification of these
parameters is crucial. This paper describes a method which
is able to determine the paramelers of a physical model
taking into account the evolution of the deformation forces
and the temperature during a mechanical test involving
moderate  strain. Empirical mechanical parameter
estimation techniques from laboratory tests are based on
simple analytical models assuming that the material
microstructure has linear behaviour. When the internal
microstructure is altered during a mechanical test, these
empirical techniques cannot be used. The inverse analysis
approach consists of coupling a direct physical model with
an optimisation module allowing the simultaneous and
automatic identification of the whole parameter set in the
physical equations. Optimisation methods are generally
based on zero-order methods (genetic algorithms [6],
simplex methods [9] or gradient methods [3]. The
computation of the cost function gradient can be done
using an analytical method [5], a finite difference method
or a sermni-analytical method [10, 7].

In this work, an inverse analysis technique based on a
hybrid model comprising both physical and neuro-fuzzy
components is used for the identification of the
microstructure variables from test measurements, The
identification is based on such a hybrid model developed
for aluminium alloys and extended to steel materials. The
inverse model obtained via the minimisation of an

objective function representative of the difference between
the experimental information (deformation conditions,
temperature, grain size and recrystallisation time) and the
corresponding computed values, formulated in a least
squares sense. The optimisation procedure is based on a
Gauss-Newton algorithm utilising an accurate compulation
of the sensitivity matrix. Validation of the proposed
approach was first done using an experimental data-base,
and then extended to unseen data from the literature. A
literature database has been compiled which contains all
the information gathered during the research project. This
will facilitate knowledge management for researchers in
the future, as well as giving insight information as to where
the dala came from, and how dense il is for cerlain process
conditions which impacts on the confidence in the
prediction for particular conditions.

II. DIRECT MODEL

A powerful approach for generic modelling of material
properties is one which includes the internal states of the
process as well as the inputs and outputs. The output
variables are the flow siress (o), the density of nuclei for
recrystallisation (N,) and the average growth rate for
recrystallisation (G ) in terms of the state variables, while
the values for the input variables are strain rate (&) and
temperature (1) [11].

In thermomechanical processing, the strain rate and
temperature (which can be described by the Zener-
Hollomon parameter Z = éexp(Q/RT ), where Q is the
activation energy) generally change continuously during
the deformation process itself and may change from one
rolling pass to another.

Modelling of the flow stress is carried out in terms of
the internal state variables represented by as the dislocation
density, subgrain size and misorientation (p{”z, 8, 8) which
in turn are determined by the deformation conditions (T,
£ , ). The final stress is the sum of the effective stress (o)
and the internal stress (o)) that arises from the dislocation
structure [12]. Thus,
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where o is the thermal siress due to interaction of
dislocation inside the subgrain, o is the long range internal
back stress due to subgrain boundaries, oy is the stress
arising from grain boundaries, and o, is the stress due to
second phase particles.

The overall model is based on the evolution of
microstructure in a thermomechanical environment. [t
includes modelling the mechanics and heat transfer
conditions to provide input data for the microstructural
model as shown in Fig. 1. The model must involve
microstructure/property relationships that are used
interactively to compute the product properties. It should
also allow for examination of the internal variables
examination and optimisation of the process conditions
within the constraints imposed by the plant.

Nucleation of recrystallisation takes place in different
places within a deformed material. A generalised model to
describe the effect of subgrain size distribution across
grain boundaries or other mobile boundaries has been
proposed recently [13] and is described by the following
equation:

Ny =p M b +p2/12-i+p32.3 {—Z+p4/14 +}_)—6;

é ) ) (2)
where S, = (0.49 exp(-strain/1.153) + exp(strain/1.155) +
0.571)/do , P, is the number of grain corners per unit
volume, and L, is the line length per unit volume.

As the strain regime covers a wide range of
thermomechanical processing conditions, the equation can
be simplified by assuming ps is constant for all strains used
in the calculations [13]:

N, = pd; i_Vz

g 3)
where dj is the grain diameter, A, is a material dependent
constant, and p; is a probability term,

Recrystallisation kinetics is determined by both
nucleation density and growth rate of nuclei. If the
nucleation is site-saturated, which is a reasonable
approximation after hot deformation, then the following
kinetics law of recrystallisation is obtained:

X(1) = 1 — exp(Xeu(t)) 4)
where X(#) 1s the fraction recrystallised after annealing
time ¢ and X2 is the corresponding extended volume
which 1s determined by:

X, (1) = %xNV (Gay (5)

where ( is the growth rate of the recrystallisation nuclei
which is mainly affected by the recovery from the
deformed microstructure and the spatial distribution of the
stored energy on the scale of the grain size and is related to
the stored energy Pp by:

G =M,P, (6)

where My, is the grain boundary mobility.
The stored energy is calculated by:
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where @, is the critical angle for distinguishing between a
grain and subgrain boundary (approximately 15 degree).

The time for 50% recrystallisation can be calculated by
the following equation:

W IVEnY,
tso = Cs Py Ny (8)
where C; is a temperature-dependent material constant,

For site-saturated nucleation, the recrystallised grain
size is simply calculated from the nucleation density as:

dex = ANy €)

where A is a geometric parameter to relate the surface
linear intercept size and spatial diameter of the grains. For
a grain structure of uniform tetrakiadecahedra (TKD), 4 =
0.2347.

I INVERSE MODELLING

The main idea of the inverse method is to fit a
mathematical model to a set of experimentally obtained
data, The model depends on a sel of N design parameters x;
where £ = I, .. ., N. An objective function ffx,) is defined,
giving the error between the model approximation and the
set of experimental data. The objective function is
designed using a least-squares formulation such that best-
fit design parameters are obtained by its minimisation.

The inverse modelling concept is based on predicting
the material internal states, where the input/output
deformation conditions and material characteristics are
available (Fig. 2). Based on the developed physical
component for the single-phase material, the selected
material under test was modelled using the combined
physical equations and neuro-fuzzy models [1]. In
designing the experimental test conditions, the process
input variables are selected, such as the temperature, strain,
and strain-rate as well as the chemical composition of the
material which should be known before performing the
test. The final material characteristics, such as the stress
and the recrystalisation kinetics can be measured at the end
of the test. The developed physical model can then be used
to predict the internal states of the material and correct the
model parameters based on an optimisation procedure and
some measured variables of the internal states.

Table 1 shows the parameters of the physical equalion
governing the recrystallisation kinetics. The listed
parameters are based on the developed physical model for
Al-1%Mg material [13]. The first stage in the inverse
modelling was to validate the methodology on the existing
data that are used to develop the model. Table 2 shows the
experimental and predicted internal states based on the
hybrid modelling technique and the inverse technique. The
results are shown graphically in Fig. 3. At a strain of 1
both the subgrain size and misorientation were under-
predicted which is due to errors in the experimental
measurements.

The next stage was to verify the model on data which
have not been used in developing the model. Furu et al [4]
used the same material and deformation conditions in
mechanical tests. Not many data were available for the
internal states. Table 3 shows the prediction results for the
internal states using the hybrid and the inverse modelling
technique.

In order to validate the technique for different materials
and deformation conditions, Cotner and Tegart [2] provide
some results on Al-1%Mg material deformed at different
temperature and 2.83 /s strain rate. However, not all the
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internal states were available (only the subgrain size and
misorientation) while only the time for 50%
recrystalisation was measured plus the flow stress. In order
lo implement the same concept, il was nol possible 1o
perform the same exercise since the d., measurements are
nol available. Furthermore, some measurements were
made at 0.73 strain while the other were made at 2.35. The
data were used with the same physical equations
parameters while the prediction was the dislocation
density, the d.x at two strains and the subgrain
misorientation at 0.73 strain (Table 4). The results in these
tables show the technique to be flexible in terms of
predicting the unmeasured variables and hence allows for
designing the experiments based on the prediction of the
inverse model.

TABLE 1: Parameters for physical equations,

parameter value
Burger vector (b) 2.86E-10
shear modulus (G) 1.97E+10
p3 0.0191
A3 0.692
C 7.0E+10
M 3.0000
A 3.2860
al 0.3800
o2 0.7900

TABLE 2: Training data for Al-1%Mg at 385°C and 2.5 strain rate [13].

strain  model type p(/m?)  Fum) 0(°
0.4 experimental ~ 1.40E+13 1.57 1.48
hybrid model  1.50E+13 1.38 1.65
inverse model 1.20E+13 1.57 1.49
0.7 experimental  2.40E+13 145 2.54
hybrid model  1.70E+13 142 231
inverse model 1.69E+13 145 2.53
1.0 experimental ~ 1.70E+13 1.5 3.9
hybrid model 1.79E+13 147 3.53
inverse model 1.83E+13 144 3.50
1.3 experimental  1.80E+13 1.61 3.6
hybrid model 1.43E+13  1.28 2.44
inverse model 1,84E+13 1.45 3.53

TABLE 3: Testing data for Al-1%Mg at 385°C and 2.5 s strain ratc [4].

strain  model type p(/mY)  §(um) 0(°
0.4 experimental 1.80E+13 1.57 1.50
hybrid model  1.49E+13 1.58 1.57
inverse model 1.20E+13 1.48 1,49
1.0 experimenlal  1.70E+13 1.50 3.90
hybrid model  1.77E+13 1.46 1.44
inverse model 1.83E+13 3.86 3.50

IV, INVERSE MODELLING WITH PARAMETERS
ESTIMATION

The necessary experimental testing mainly involves hot
rolling and subsequent resource-iniensive metallographic
examination with some supplementary plane strain
compression testing. Such experimental work has been

TABLE 4: Testing data for Al-1%Mg at 2.35 strain and 2.83 /s strain rate
[2].

temp (°C) 400 450 500 550
0 (%) 2.20 2.30 2.40 2.50
exp & (um) 7.40 9.20 1020  11.60
Tsy (sec) 410 - 27 7
.o (MPa) 1200 960 700 510
p(1/m*  39E10 2.5E10 24El0 2.1E10
pred 6 () 1.00 0.81 0.66 0.55
dex (um) 7418 8576  91.87  100.10
A (um)”  107.62 12443 13329  145.22

* @ 0.73 strain

conducted using samples of two similar alloys of
commercial purity steel Fe3%Si under compression
testing. The materials had the compositions shown in Table
5 and they have the same metallurgical recrystallisation
kinetics as for the aluminium alloys. Experimental results
logether with the deformation conditions were fed to lhe
inverse modelling technique along with the optimisation
technique.

The optimiser was used to search for the best-fit
parameters which optimise the physical equations in order
to calculate the internal states using the recrystallisation
experimental data. These five parameters were optimised
using a least squares error function, The results of the
optimised parameters for the physical equations, as well as
the constants, are displayed in Table 6.

TABLE 5: Chemical composition of the two Fe3%Si matcrials.
C S8 Si P Mn Ni Cu Cr Mo Al
0.0360.0193.16 0.004 0.089 0.011 0.018 0.008 0.0020.003
0.0160.0043.31<0.005 0.13 <0.002<0.02<0.002<0.020.023

TABLE 6: Results of parameters cstimation,

parameter value
Burgers vector (b)  3EI10
shear modulus (G)  SE10
p3 0.02955
A3 0.692
C 20.5
M 3.1
A 3.2860
ol 0.38
o2 0.79

V. SENSITIVITY ANALYSIS

The aim of sensitivity analysis was to estimate the rate
of change in the output of a model with respect to changes
in model parameters. Such knowledge is important for
(a) evaluating the applicability of the model,
(b) determining parameters for which it is important to
have more accurate values, and (c)understanding the
behaviour of the system being modelled. The choice of a
sensitivity analysis method depends to a great extent on
(a) the sensitivity measure employed, (b)the desired
accuracy in the estimates of the sensitivity measure, and
(c) the computational cost involved.
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Based on the choice of a sensitivity metric and the
variation in the model parameters, sensitivity analysis
methods can be broadly classified into the following
categories:

e Sampled variation of parameters or mode! formulation:
In this approach, the model is run at a set of sample
points (different combinations of parameters of
concern) or with straightforward changes in model
structure (e.g., in model resolution). Sensitivity
measures that are appropriate for this type of analysis
include the response from arbitrary parameter variation,
normalized response and extrema.

o Domain-wide sensitivity analysis: Here, the sensitivity
involves the study of the system behaviour over the
entire range of parameter variation, often taking the
uncertainty in the parameter estimates into account.

e Local sensitivity analysis: Here, the focus is on
estimates of model sensitivity to input and parameter
variation in the vicinity of a sample point. This
sensitivity is often characterized through gradients or
partial derivatives at the sample point.

Sensitivity testing involves studying model responses
for a set of changes in model formulation, and for selected
model parameter combinations. Analytical methods
involve either the differentiation of model equations and
subsequent solution of a set of auxiliary sensitivity
equations, or the reformulation of the original model using
stochastic algebraic/differential equations. On the other
hand, the sampling-based methods involve running the
original model for a set of input/parameter combinations
(sample points) and estimating the sensitivity/uncertainty
using the model outputs at those points.

In this work, the sampling method has been
implemented by changing the model parameters as well as
the inputs within defined ranges. The output error bands
were generated by using Monte Carlo simulation via
selecling random parameters varialion within 10% of each
parameter. The probabilistic parameters in the physical
equations were p3 and 4. The simulation has been done to
obtain the sensitivity of the three internal states. The effect
of the parameters variation on d,., and t50 is shown in Fig.
4, It is seen that d., is almost constant with respect to
changing p and 6 (Fig. 4-b,f), and has constant confidence
bands. The sensitivity of d,, with respect to & shows a
small increase in the confidence bands as & increases (Fig.
4-d). On the other hand, ts, shows narrow confidence
bands with respecl to changes in p, 8, and 8 (Fig. 4-a,c,e).
The conclusion from the sensitivity analysis is that the
system is not sensitive to p, it is sensitive to 8, while only
tso 1s sensitive and 6.

VI. CONCLUSION

An inverse method coupled with a semi-analytical
sensitivity module is presenled and validated in this paper.
It is shown that the semi-analytical method is stable and
relatively fast. Moreover, it makes it easy to change the
conslitutive law because it only uses lerms calculaled from
the direct model. It has been shown also that an important
correlation between two sensitivity veclors can make the
estimation ill-posed i.e. the cost function has ‘valleys’,
while confidence intervals at the end ranges of the

estimation can be wide. On the other hand, the inverse
method makes possible an efficient fitting of experimental
data based on compulted data.

The developed modelling technique has been validated

against different experimental results in materials testing
under different deformation conditions from different
research groups. The developed model can be used by
both the research community and industry as it provides
the internal state variables as well as the final material
properties. Furthermore, the model can be used to predict
the internal state variables which are difficult, expensive
and time consuming to measure. The model has been
linked to a knowledge base that describes the sources of
the data as well as the operating range [14]. This will give
the model a “confidence band” to which the prediction is
attached.
Following further validation, the inverse model could be
used to predict the “virtual” microstructure of materials
under different deformation conditions and alloying
content. Such prediction could then adaptively guide new
experiments to further characterise the material structures
and properties.
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Fig. 3. Experimental versus predicted internal states using the inverse and the hybrid model techniques.
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