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Abstract - This paper presents a reengineering work tending
to increase to a significant degree some software qualities
relevant in the management of production of a hydroelectric
network. An object-oriented knowledge-based architecture is
proposed to ensure an intelligent and automatic management
of the knowledge in use in the daily decisional process of a
major Canadian company, It includes a machine-learning
module for historical data processing,

1. INTRODUCTION

Knowledge-Based Systems (KBS) are used in numerous
application domains, one of which is the field of
hydroelectricity, in which this work fits [1] [2] [3]. KBS
are used to reproduce an expert’s reasoning and are based
on two distinct components: knowledge and reasoning.
Separation between these two levels of intervention makes
it possible to offer a flexibility of operation that many
traditional software approaches are missing. KBS are
presently an effective and useful solution to integrate the
necessary analyses of hydropower experts and to meet the
needs of the hydroelectric industry.

An essential requirement of the KBS design process is the
use of efficient representations of large amounts of
knowledge; this ensures the consistency and effective
exploitation of the KBS algorithms. The available
knowledge can be explicit or implicit. An explicit
representation consists of a symbolic expression of human
expert knowledge; an implicit representation is knowledge
that is usually hidden in data. Tt requires further processing
of the data before useful information can be extracted from
it. In the past, Machine-Learning (ML) techniques have
been widely used lo capture hidden knowledge from stored
historical data. In each case, the goal was to determine
trends or behaviour patterns that would allow the
improvement of KBS procedures. For instance, ML
techniques have been used in hydroelectricity to produce
rules from a power generation database [4] [5].

On the other hand, Object-Oriented (OO) approaches and
languages have become quite popular, partially because of

their potential benefits in terms of maintainability,
reusability, separation of concemns, information hiding, etc.
However, the vast majority of software available today is
not OO. The effort to simply rewrite them from scratch
using an OO approach would be prohibitive, and
significant expertise recorded in the procedural software
would be lost. The cost of manual conversion would also
be prohibitive. Support coming from tools, documentation,
and developers of the legacy software would ease the
introduction of OO technology in many organizations. This
kind of reengineering process could be especially helpful
to integrate existing systems and new ones developed with
QO approaches.

In the balance of this paper, we first present in section 2
the description of the context in which this work takes
place, and the motivations for moving the Alcan Ltd
legacy system towards an object oriented knowledge-based
architecture. In section 3, we describe the adopted
architecture and present its main features. Section 4 is
devoted to present the machine-learning framework, which
is part of the global system, and its performances. Finally
in section 5, we conclude and present some of the lessons
we learned.

II. THE DESCRIPTION OF THE CONTEXT

Alcan is one of the two world’s biggest players in the
aluminum industry. With a total surface area of 73 800
km?, the Alcan hydropower network under study,
constitutes a territory larger than the province of New
Brunswick (Canada). The network has, on average, an
annual energy capacity of approximately 2000 megawatts;
it includes 6 hydroelectric power stalions, 28 reserve
installations, 43 turbine-alternators groups (TAG), 850
kilometers of energy transport lines, a network of about
thirty hydro-meteorological stations, etc. Figure 1
illustrates the geographical localization where the work
takes place.

"This work is part of an industrial project between the ALCAN Ltd group and CRIM, a research center. It was supported by a joint grant
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The objeclive of planning the operation of such a network
can be summarized as the satisfaction of the following
requirements:

= Effeclive use of water

= Account of future hydrological uncertainty
» Satisfaction of energy need

= Respect of safety constraints.

To reach these goals, a decision-making process of water
stock management is used that consists of four steps:

1) Weather hydro measurements and gathering of the
data;

2) Data analysis;

3) Weather and hydrological forecasting;

4) Planning.

In these planning tasks, information processing systems
based on mathematical models tested for this kind of
applications, are used for optimization and simulation
purposes. These models are implemented in Fortran within
more than 65 routines. A part of the application contains
what we consider as expert knowledge within its source
code. However, most of the knowledge is used implicitly
and in a non-automated way by Alcan analysts at different
steps of their decision-making process. Thus, the main
disadvantage of the solution used since several years, is the
absence of separation between the knowledge level and the
inference or reasoning one, in a product used in a
knowledge intensive process! An immediate consequence
is the restriction in the possibilities of investigation and
exploration wanted by the Alcan analysts. A consequence
of that is the difficulty of maintaining and making evolve
such a systemn.
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Fig. 1. Geographical localization of the study

The decision-making process is part of the knowledge
management (KM) policy of Alcan Ltd. However, the
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knowledge used in the studied decision-making process, is
many and varied. The problem is that this knowledge is
often hidden in the code of the programs which use it, or
consigned in internal documents, or even used implicitly
by the experts, as in our case. This situation becomes more
problematic, when the Alcan hydrological resources
analysts wants to explore new scenarios, while modifying a
little one of this knowledge. 1t has no other choice than to
traverse the source code of the implemented programs, in
order to make the discounted modifications there. It is, for
example, the case of the operation rules of each power
station and tank.

The available knowledge can be explicit or implicit. An
explicit representation consists of a symbolic expression of
human expert knowledge. Rules are an example of that;
they allow you to separate the expertise from the
application code. Since expert rules are externalized from
the application code, they can be changed independently
without recompiling the application. An implicit
representation is knowledge that is usually hidden in data.
It requires further processing of the data before useful
information can be extracted from it. For that, Machine-
Learmning (ML) techniques have been widely used to
capture hidden knowledge from stored historical data. In
each case, the goal was to determine trends or behaviour
patterns that would allow the improvement of KBS
procedures. In our study, we want to improve the forecasts
of natural contributions flow thanks to information
contained in the historical database. Section 4 will
introduce first the variables we want to predict and the
predictive variables, and then, the machine-learning
algorithms we have used to do so.

In the following section, we present the main features of
the reengineered system.

III. THE OO KNOWLEDGE-BASED SOLUTION

As stated above, this work deals partly with the knowledge
management of the Alcan experts, including data, thus
allowing the hydropower resources planning or simulation.
To help perform the planning tasks, we have developed a
KBS called HYPERPIK (Hydro Power Resources
Planning based on Inference and Knowledge). Figure 2
sumumarizes our system architecture.
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Fig. 2. The HYPERPIK architecture
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It consists of an inference engine that is coupled with a
knowledge base resulting from the problem modeling. The
knowledge base contains an explicit knowledge that is the
symbolic expression of Alcan experts’ know-how. A
machine-learning framework exploits a historical database
and produces explicit or implicit knowledge, depending on
the selected learning mechanism. The produced knowledge
is then used in the decision process. In particular, it uses
natural contributions flow values predicted from the
historical database. These contributions flow values help
evaluate the ability of the power system to face various
contingencies and to propose appropriate remedial actions.

On the other hand, the planning step exploits explicit
knowledge. It takes the form of rules. Rule technology is
based on the philosophy of providing fast and flexible
software components to empower computer applications
with “business” or “expert” rules capabilities. The general
idea of a rule is that actions on the right-hand side are
carried out whenever all the patterns on the left-hand side
are successfully matched. A pattern is an expression that is
capable of designating one or more objects. The objects
result from our modelization of the hydropower domain
and figure 3 illustrates the resulted classes diagram.

The decision (inference engine) processes the rules using
the objects in a working memory. It implements a RETE
algorithm [6] (it is widely recognized as by far the most
efficient algorithm for the implementation of production
systems) where rules are compiled into a network, Input
data to the network consists of changes to working
memory. Objects are inserted, removed and modified. The
network processes these changes and produces a new set of
rules to be fired. This process continues cyclically until
there are no further rules to be fired.

x4 lwerda

downsheim

[N 1y

ProductionConsiraim | | TurbinefkeConstraint

Fig. 3. Objects involved in the planning process

The rules have a simple structure, composed of a header, a
condition part and an action part. The header part defines
the name of the rule, the eventual packet to which the rule
is attached, and its priority (if needed). The condition part
utilizes the object-oriented structure of Java lo carry oul
pattern matching on class instances, i.e. objects. This
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pattern matching binds (instantiates) variables to objects
and field values. Rule conditions are also used to test field
values. This provides a filtering mechanism for objects.
When the condition part of a rule is verified, i.e. valid
objects have been found, the action part of the rule may be
executed. Actions may vary from simple to complex, e.g.
printing 2 message to creating new objects or calling a pre-
existing Fortran routine (through a Java method). The rules
are written in the Ilog rule language' and the following one
illustrate their structure:

rule
MaxEnergyProduction_StJeanLake_withoutDischarge{
packet = Management_StJeanLake;
priority = 10 ;
when { Simulation(hydriousContext(currentDate) ==
"Winter"),
?Isj . Site (?lsf .name =="StJeanLake";
?Isj. shortTermRiskDischarge (currentDate) >=
0);}
then { / product Max energy at StieanLake without
discharging
modify ?Isj { ?lsj.turbineMaxWithoutDischarge
{currentDate) ; } }}

Our work yields to a knowledge base of about 150 rules
organized in 16 packets. A packet allows us to group rules
with regard to their goal in the whole process. Examples of
packets are: St-Jean Lake management (see the rule
above), short-term risk at St-Jean Lake, overflow risk,
Saguenay sub-system energy production, etc. Some of
them exploit a priority to determine the order in which
rules are execuled. The larger the number is, the higher the
firing priority of the rule.

A new interesting functionality of the new system concerns
its evolvability. The Alcan analysts can edit the knowledge
base and then modify one or several rules before running a
new simulation and then exploring new scenarios. It is one
of the main requirements that motivate this work, and
figure 4 is an illustration of this new functionality.
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Fig. 4. The rule basc editor

' Tlog Jrules is a general-purpose expert-system generator
that combines rule-based techniques and object-oriented
programming (www.ilog.com).




This reengineering work yields also to a new interaction
model between Alcan analysts (final users of the system)
and the system. The use-cases given in figure 5 illustrate
these new functionalities and particularly the flexible way
that the experts from now on have to configure their
network or run a simulation session. Thus, an analyst can
configure (define) the hydropower network; it means
defining the whole system and all the elements it contains
(e.g., power stations, tanks, etc.). Of course, he can run a
simulation to obtain planning results; this simulation is
done thanks to the rules we have implemented and also to
some computations (forecasting) done by the Fortran
routines. Figure 6 is an example of a simulation for a
winter season.
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Fig. 6. Running a simulation

Next section will describe the machine-learning framework
we are developing. It is an important piece of the whole
architecture. It positively imfluences the evolvability of the
system, by considering data in the planning process.
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IV. THE MACHINE LEARNING FRAMEWORK

In our study, the machine-leamming framework uses
information contained in a historical database to improve
the forecasts of natural contributions flow in the short run
of Chute-du-Diable (CD - see the map in Figure 1)
catchment area for the summer-fall period (June 15 at
November 30). The variables we have worked on are
summarized in tables 1 and 2, which list the variables to be
predicted and the predictive variables.

TABLE 1. Variables to be predicted

RS . Ty T s
i Vgnghle Tl s Abbreviation. .

Natural CD contributions flow for 1992 — 99 AncCD J1 to

day 1 to 7 in a week AncCD J7

Volume of natural contributions flow] 1992 — 99 Vol 31

of ncxt 3 days =

'Volume of natural contributions flow| 1992 — 99 Vol 71

lof next 7 days -

The predictive data includes the discharge flows of several
rivers and serves to measure the natural contributions to a
site, as these are the sum of the flows of the various rivers
of the catchment area. For the CD site, the Manouane,
Serpent and Petite Péribonka rivers are all parts of the CD
catchment area. The data also includes precipitations, as
the more it rains, the more the natural contributions are
high. Due to problems encountered while using this first
data set, we worked with Alcan’s experts to produce a
more efficient one, as described next.

First, we restricted our study to the years between 1992
and 1999, since data form the previous years were often
fragmentary. The incomplete data were eliminated after
consulling the experts. We also created new variables to
summarize redundant information. Among these is a
balanced precipitation that accounts for the precipitations
of the 7 or 8 days previous to the day for which one wants
to estimate the natural contributions. Next, we worked with
Alcan’s experis on trying to reduce the number of
predictive variables by considering the characteristics of
the Alcan network and by only keeping the relevant
variables. For example, since the flow of the Manouane
and Serpent rivers is measured upstream CD), one considers
that the measured flow for the Manouane river at time T
will arrive at CD at time T+24 hours, and that of the
Serpent river at time T+18 hours. This shift thus enables us
to have a more precise idea of the flow coming from these
two rivers, which will contribute to the natural
confributions of the following day. Since the two rivers do
not cover the whole CD catchment area, the discharges of
Petite Péribonka river are also needed to partially account
for the flow of the southern part of the catchment area.

Thus and from the above considerations, we obtained the
refined predictive variables given in table 2. These were
the starting point for selecting the relevant variables to use
in predicting the values of natural contributions from
historical data. The selection process was done with the
help of Alcan’s experts, based on relevance and the
experts’ experience. It turned out that 14 to 16 of the 5]
predictive variables were needed for each variable lo
predict.



TABLE 2, Refined predictive variables

Machine
e Sample | Number | Abbreviation Leaming
e VAL TA DB Pri TR | oy Dt [ ol e g gt
v years of data Deduction //
Natural contribution flow for | 1992 — 2 AncCD Pl
previous 2 days at CD 1999 AncCD P2 Induction Analogy
Variation of natural contribution 1 AncCD_T1j
flow between Day -1 and Day — 1?;)929_ Neural / \ \
2atCD networks
Discharge flow of Manouane | 1992 — 1 Qman_4H Induction of Case-based
river at 4H 1999 Induction of decision trees learning
Discharge flow of Manouanc | 1992 — 1 Qman_P1 rules
river previous day 1999
Variation of discharge flow of 3 Qman_T4h, Fig. 7. Machine-Learnine T
Manouane river for previous 4H, l19 ;)59_ Qman_T12h, B R e R R AR Dy
12H, 24H (m3/s /hr) Qman_T24h, We also used a cross-validation procedure where the
Variation trend orf discharge 1992 — l Qman_VarT available data is divided into N blocks so as to make each
flow of Manouane river between > e .
daid 13 honts 1999 block’s number of cases and class distribution as uniform
Discharge flow of Scrpent river | 1992 — 1 Qscrp_4h as possible. N different classification models were then
at4H 1999 built, with one block omitted from the training data in
Dlsc!'larg(; flow of Serpent river I19999297 1 Qserp_P1 each model. Each model was then tested on cases that
previous day : :
Viration of dacites How 5f . 3 Qserp_Tan, pelong to the omitted block: In this way, each case appears
Serpent river for previous 4H, [ | Qserp_T12h, in exactly one test set. Provided that N is not too Fmall, the
12H, 24H (m3/s / hr) Qserp_T24h average error rate over the N unseen test sets is a good
Variation trend of discharge | |0, 1 Qserp_VarT predictor of the error rate of a model built from all the data.
flow of Serpent river between 4 1999 .
and 12 hours Table 3 shows the best results that we have obtained by
Discharge flow of Petite | 1992 - 1 Qpper_4h using the different ML methods.
Péribonka river at 4h 1999
Discharge  flow of Petite | 1992 - 1 Qpper_P1 TABLE 3. Compuled Accuracies (%)
Pen.bo.nka river previous day 1999 Algorithms Ca3 o2 CBL RPROP
Variation of discharge flow of 3 Qpper_T4h, Vatiabl NN
Petitc  Péribonka  river for | 1992 Qpper_T12h, bl e
previous 4H, 12H, 24H (m3/s /| 1999 Qpper_T24h Vol 3] 91 915 993 99|
hr) -
Variation trend of discharge 1 Qpper_VarT Vol _7J 77.1 84 99.6 97.2
flow of Petite Péribonka river | o0
between 4 and 12 H Anc_CD_1J 79.7 80.3 97.9 942
Precipitation from day —4 to day | 1992 - 4 PbvCD_P1to Anc CD 2] 81.4 20.7 96.2 957
-1 - catchment area CD 1999 PbvCD_P3 T nrs 3
Precipitation from day -3 to day | 1992 — 3 PstCD_P1 to Anc_CD 3J 77.1 80.9 98.3 94.4
-1 - station area CD 1999 PstCD_P3
Precipitation from day -3 to day | 1992 | 3 | PSICDP P1to| | Anc CD.4 il 0I5 933 94.6
-1 — station area CDP 1999 PstCDP_P3 Anc CD 5J 803 76.6 965 952

. 3 PstMisbi2,_P1 RS
Precipitation from day -3 to day | 1992 to Anc_CD_6J 823 %51 993 933
—1 — station area Mistassibi 2 1999 PstMisbi2 P3

3 PstManE P1 Anc_CD_7J 81.4 78.7 G9.3 934
Prccipilalion from day —3 to day | 1992 — to !
-1 — stalion area Ma ane Est 1999 : . . -

'b d “?“ rea Minoudne = PstManE_P3 The computed accuracies are pretty high especially, for the
Precipitation  forecasts  from | 0, 7 Pprev_J1 to Vol 3] variable. The predictive power of the different
day+1 to day+7 — catchment (999 Pprev_J7 ol R
area CD models 1s very satisfactory!

Fakaced precipitation’ orcetil qung.. 7 Epaing: b1 [ One distinction between C4.5 and CN2 from one part, and
from day+l to dayt7 - 1999 Ppond_J7 d CBL £ h . .
Al MEAr Af e CD RPROP and CBL from the other part, is on the induced

Starting from the taxonomy given in [7] and illustrated by
figure 7, we have explored four ML algorithms lo predict
the variables needed in the planning process: C4.5 [8] a
top-down induction decision tree algorithm, CN2 [9] [10] a
rule induction algorithm, a Case-Based Learning (CBL)
algorithm, and a resilient back-propagation (RPROP)
neural network [11][12].

In this work, the set of refined historical data, about 1200
values for each predictive variable, was randomly divided
In two subsets with two thirds of the data in the first one,
and the remainder in the second. The first subset was used
for training the network and the second for testing it.
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knowledge. The two first produce rules or decision lrees
that could be exploited by the knowledge-based system in
its decision making process. RPROP and CBL do not
produce any kind of explicit knowledge. However, they
allow predicting variables like volumes or contribution
flows, giving some predictive variables.

In the light of the obtained results, it seems that the most
efficient way to build the ML framework is to associate the
multilayer perceptron or the CBL algorithm with one of the
inductive algorithms, C4.5 or CN2, The former would
generate implicit knowledge (variable classification) that
helps the decision process and the latter would generate
explicit knowledge (rules) to be stored in the knowledge
base,



V. CONCLUSIONS

The reengineered system is currently used within the
hydropower resources management group at Alcan Ltd. It
results from a long collaborative process belween authors
of this paper and Alcan analysts. The latter were active and
decisive actors; they have to maintain their Fortran
routines (e.g., short term evaluation functions, water rise
rate calculation functions, volume calculation functions,
etc.) and we have to build a bridge between these functions
and the objects methods we have implemented. The
exercise was not so easy; we have to keep a good
separation between what we consider as an expert
knowledge and the procedures that exploit this knowledge.
This critical step of the project was iterative and it requires,
even now, many adjustments.

The following points could summarize the strengths of this
solution:

" a greater flexibility of the tool during its use within

the decisional process, by facilitating the exploration
of new power network management scenarios. It is
the main need of Alcan analysls;

better user interfaces allowing better usability during
system configuration and simulations;

a belter evolvability of the system thanks to the OO
rules-based architecture. It results from our
objects/rules modelization and it allows updaling
easily expert knowledge to explore new planning
schemes. The general understandability of the system
is also much higher than it was in the previous
system;

a current and future better reusability of different
components of the system.

We are working now on some extensions of the system. By
tuning rule priority factors, mainly for those dealing with
managementl instructions, we expect to improve the whole
performance of the tool. In fact, the tuning of such a
system is a long and meticulous work; it is actually one of
the main tasks of Alcan analysts. On the other hand, we are
still exploring new ML algorithms to incorporate within
our framework. Finally, a next step will be to produce a
rules verification module, coupled with the rule base
editor, in order to maintain the knowledge base free of
anomalies (redundancy, inconsistency, elc.).
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