Genetic Algorithms for solving the placement and routing problem of an FPGA
with area constraints

Manuel Rubio del Solar

Dpto. Informética
Universidad de Extremadura
Caceres 10071
Spain
mrubio@unex.es
Juan Antonio Gémez Pulido
Dpto. Informdtica
Universidad de Extremadura
Céceres 10071
Spain

jangomez@unex.es

Abstract — In this work a method based on Genetic
Algorithms for solving the placement and routing problem of
a Boolean function in a Field Programmable Gate Array
(FPGA) is presented. The case of constraints defining a
restricted area in the FPGA is also considered. We have faced
the problem using a Simple Genetic Algorithm (SGA) and a
Parallel Genetic Algorithm (PGA) using the MPI Standard.
With the proposed method cuasi-optimal solutions in
reasonable time are found.

I. INTRODUCTION

The Field Programmable Gate Arrays (FPGAs) are
integrated devices used for implementing as logical circuits
Boolean functions after a programming process with the
appropiated tools[8].

Although there are in the market several types of
FPGAs, in this work we use the FPGA model based on
islands [2] (FIG. 1). In this type of FPGA there are three
kind of elements: Configurable Logic Blocks (CLBs) by
the user, that allow to implement Boolean functions of a
given variagble number, Input/Qutput Blocks (IOBs) that
communicate the FPGA with the outside world and
Interconection Resources (IR) as Interconection Arrays
and Channels. Through the IR go the interconnection lines
used for connecting the CLBs or the CLBs with the IOBs.

In this work, we pose and solve the placement and
routing problem with area constraints of a Boolean
function in an island based FPGA [2].

I0OBs
e g
DQ&Q%QII [} CLBs
E:E Q#}Q%E I:l Interconnecuon
L gt E%
=LI= =] orizon
L Ondl Il gm;w] tl
Ny
Vertical
Channel

FIG 1. Island based FPGA.

Juan Manue] Sanchez Pérez
Dpto. Informética
Universidad de Extremadura
Caceres 10071
Spain
{anperez@unex.es
Miguel Angel Vega Rodriguez
Dpto. Informdtica
Universidad de Extremadura
Caceres 10071
Spain
mavega@unex.es

The rest of the paper is structured as it follows: In
section 2 the problem is presented. In section 3 the GA
design and implementation are explained. In section 4
some found results are shown and finally in section 5 the
conclusions and future work are shown.

II. PROBLEM STATEMENT

The departure point is a Boolean function optimized
from the logical point of view [1]. This function will be
implemented in a based island FPGA [2].

The Boolean function may be represented as product
sum (FIG. 2) or as a circuit (FIG. 3) or as a block diagram
(FIG. 4).

Each Boolean function term, subcircuit or block is
mapped with a FPGA CLB. It is necessary to take into
account that CLBs and FPGA interconnection resources
are limited and by that the different subcircuits are placed

f = AB + AB
FIG 2. Product Sum.

FIG 3. Circuit.

B o
AB+AB

FIG 4. Block Diagram.

31

in CLBs in order to the FPGA used area will be the lower
possible with the aditional consideration that the
interconnection channel density (number of occupied
connection lines / number of total connection lines) will
not be very high.

We consider also the case in which a part of the FPGA
will be occupied by other circuits, that is interesting for
designing several circuits in a FPGA of great size. In order
to tackle this problem we impose an area constraint
specifying a forbidden area for CLBs and its corresponding
interconnections. This area may have any size and may be
placed in any FPGA part. For simplifying the problem we
consider only rectangular areas.

This is an optimization problem with many solutions.
For finding a cuasi-optimal solution in a reasonable time
we have used firstly a Simple GA and after a Parallel GA.

IIT. DESIGN OF GENETIC ALGORITHMS

3.1 Simple Genetic Algorithm

We start with an initial population of eight
chromosomes, Each chromosome represents a problem
possible solution. Each solution consists on a CLB list in
which the CLB coordinates are known. So the
chromosome length depends on the represented circuit
size. Each chromosome has also information about the
connections between its CLBs so as its associated cost.
(See FIG. 5).

In order to each population chromosome will be
evaluated we propose to use the following fitness function:

f = @-dis + f-den

Where dis represents the dispersion, that is, the general
distance between all CLBs. Higher distance higher
occupied FPGA area [4]. The X and Y coordinates of each
CLB are known in each time. The value of dis factor is
given by:

i"/((cxi o 2N)2 +(CYf "CY.'+1)2) (1)
=0

Dens is the interconnection channel occupation density.

The e and S coefficients are configurable parameters by
the user in order to assign more importance to dispersion
or density.

CHROMOSOME
COST
CLB 1 CLBn
) - Coordinate X [~ = = | -Coordinate X
CLB list - Coordinate Y - Coordinate Y

FIG 5. Chromosome representation.

GENERATION n GENERATION 1 + 1

Chr. 0 Chr0, Crossover 0, 1.

] Chrt Chrl. Crossover 2, 3.
Chr, 2 Chr2. Crossover 0, 4.
Chr. 3 Chr3. Crossover 1, 3.
Chr. 4 Chr4.Randoraly generared.,
Chr, 5 ChrS. Randomly generated.
Chr. 6 —p Chré. Copy of 0.
Chr. 7 r Chr7. Copy of 1.

FIG 6. Scheme of the replacement politics.

After to establish the fitness function we explain the
selection mechanism for passing from a generation to the
next one (the initial population corresponds to the 0
generation).

In each generation, chromosomes are distributed
according to the increasing order of its cost. The
chromosome population is replaced and selected using the
scheme of FIG. 6.

The offsprings 0 and 1 of the new generation are the
result of crossing the chromosomes 0, 1 and 2, 3 of the
previous generation, respectively.

The offsprings 2 and 3 of the new generation are the
result of crossing the chromosomes 0, 4 and 1, 5 of the
previous generation, respectively. So, we introduce some
diversification crossing no optimal chromosomes.

The offsprings 4 and 5 of the new generation have been
randomly generated. They are not consequence of the
crossover between two chromosomes. So, more
diversification is introduced for exploring the solution
space.

The offsprings 6 and 7 of the new generation are an
exact copy of chromosomes 0 and 1 of previous
generation. This is a mode for preserving the best
solutions of the previous generation.

When all chromosomes of the new generation has been
found, its costs are computed and then, they are ordered
according to the increasing order of its weigths. So a new
population is obtained in which its best chromosomes are
in the first positions. So the population is ready for creating
a new generation.

For implementing the crossover operator we have used
the crossing in the middle point of each chromosome, that
is, an offspring of two chromosomes will have as CLBs
those of the first half of the first chromosome and the
second half of the second chromosome.

With the algorithm used until the 2500th generation,
mutations are produced with a frecuency of 3%. When this
number is passed then the mutation probability increases to
the 25%.

The mutation is performed assigning a random
coordinate to any CLB of the mutant chromosome (CLB
randomly chosen).

32

™ Use constraints.

]12 I‘FG D v 18

e

FIG 7, Constraint specifications

3.2 Constraints

For implementing the constraints [3] (see FIG. 7) it is
neccesary to indicate the restricted area coordinates.

When the initial population is generated, a checking is
made for assuring the CLB coordinates are not in the
forbidden area. (FIG. 8) The crossing operation have not
any problem Wwith the conmstraints because chromosomes
with valid positions are being crossing. During the
offspring selection it is necessary to check the
chromosomes 4 and 5 are valid. In the mutation operation
it necessary to check that the resultant chromosome will be
valid.

In the routing step the constraints must be considered
because the connection lines are not able to cross the
restricted area. (See FIG.9)

,“r.}

{0

e

o'd

g

) O 5 @l -cirmlr‘:":utlgLn‘-_ﬁ,'
for =g o \Efm_ 3 i
- e SR B e
Eecencini i i et
SR
oo e ol o 4 1. htlh,: L
o CroTer
= i Ens o]
C i i it}
.)1 e e A LR (o e e
. 4 fa £ W
SASiE e EEHCAC RS TR TR
B e A Sashstees
=t ;,%” T = . e S N
rEeE A O i o e e - A e eV
= -'aF-Ic'- e hrL = o i‘h = > : -
B 0] R I s P
= aHE T A A e o
i (m % m) 1 o (= po 5 S
i e e i e e = oo
ot e e L s g
N s B P
B = i L S it e e e e
o e e 20 e S b e e
e e el e R gty (e e i
I i = o S Y 2 i g
i ¢ ?:1 3 3= L o s 31 Ul e
D e 2 ':L‘:'Q’;P,D‘ .
e e (=) L e e o8
b o ¢ i o ¥ i g

FIG 9. Placement and routing with constraints.

& POPULATION 3
PORULATION 1 \ /
Y

POPULATION 7
POPULATION 5

FIG 10. Paralle]l Algorithm in star.

POBULATION 6

3.3 Parallel Genetic Algorithm

The parallel execution offers better results than the
sequential execution even in a single processor machine
[2].

The used parallel genetic algorithm joins in a star [7]
eight populations. (FIG. 10) One is the master population,
the other ones are the slaves. Each slave population send
its best chromosome to the master population. At the same
time the master population sends its best chromosome to
each of slave populations.

After each interchange of best chromosomes, all
populations are ordered according to the cost of each
chromosome as it was made in the simple GA.

3.4 Parallel GA Using MPI

In order to parallel the mentioned GA we have used the
MPICH [8] tool. This is one of the free issues [9] more
spreaded of the MPI Standard [10]. The parallel
implementing consists of executing eight processes
simultaneously. These processes are based on the simple
GA. Each process is a population random initialization so
as its evolution. The eight processes are executed
simultaneously with MPI. The data interchanged between
the processes are chromosomes; that is solutions. The
solutions are stored in a non standard data structure (Fig 5)
for MPI. So, before the process communication they are
coded as a character string. After, they are decoded for its
interpretation. A schema of the parallel implementation in
MPI is:

- Initiate parallel execution
- Find the process number in execution
- Find the process ID.
- If it is a slave process (Id < 8) then send
the solution to master process.
- If it is the master process (Id = 8) then
Receive the solutions of the remain
processes, store them in an array and show
the result.
- End parallel execution.

33

FIG 11. Circuit to implement.

IV.RESULTS

In this point we show the found results using the 15
CLBs circuit represented in FIG. 11. This is a circuit of
medium complexity that we have used for demonstrating
the Genetic Algorithms works.

With the simple GA we start with a randomly generated
population. FIG. 12 shows the best chromosome of the
initial population in the FPGA the implementation of this
solution in a FPGA. We can see it is a bad solution because
the CLBs are spreaded in the FPGA and in the FPGA top
there are a great interconnection line density.

FIG. 13 and FIG. 14 represent the best solutions in the
2000th and 5000th generations, respectively. After 2000
generations, for the best chromosome the CLB area is
more compacted and the interconnection line density is a
bit better than that of the best chromosome of initial
population. After 5000 generations the CLB area and
interconnection line density of the best chromosomes are
similar to best of the 2000th generation.

ojd D
o

oo
=

i
DS X3
ko)

T

o
)

i
arin

|

1000

T

o Ao banebaonan
B A M B S

R cioRcary=geysg

5 I o T 0 e o

e i il
= 5

e A
oooo

ooood

FIG 13. Best chromosome of the generation 2000

i ? i 3
o x =
e s S o =
T : ggl,‘D_w e =
e mm 75_91: = o
=S = oo ai
‘‘pﬁmj B i
CeoeEa o
T s ; A
Yot ey TN 5. 1 T .
STt e
e o]
SEACRE RSN AT 8t
o 5 e
o = a - ™
= () O m)
e S F e S)
N i i ikl 0
’L:“}-m R e e s
| O 2 e L P :
| o iam 5
e
!
5
s Rl
e

HuAN

oo

T

Sy

|
i

.qiI o
Faih

Enagn}

3

FIG 16. Best chromosome of master population in the 5000 generation.

When we use the parallel GA the best chromosomes
found in the 2000th and 5000th generations are shown in
FIG. 15 and FIG. 16. The best chromosome of the master
population of the 2000th generation is better than the best
chromosome found in the 5000th generation obtained with
the simple GA. We can conclude that with the parallel GA
the CLB area and interconnection line density found for
the best chromosomes are better than the found results with
the simple GA.

The population evolution when we use the simple GA is
shown in FIG. 17 and when we use the parallel GA s
shown in FIG. 18.

34

500
“ —&— 100 GEN.
- 500 GEN.
n
8 2000 GEN.
5000 GEN.
100
o
8 ? L] 5 + a3 2z 1
CHROMOSOME
FIG 17. Simple GA evolution.
560
450 4 = RS S
1go LSRR ;
-
e
0]
B ol I —o— 100 GEN.
o
O A e — | 500 GEN.
150
o 2000 GEN,
%0 sy HEToe 5000 GEN.
[+
8 7 [5 4 3 2 1
CHROMOSOME

Fig 18. Parallel GA Evolution.

V.CONCLUSIONS

In this work we have used a a simple and a parallel GA
(using MPI) for solving the placement and routing problem
with constraints of Boolean functions in a FPGA. A
graphical interface to show by the computer screen the
problem solutions has been also built. In the future we will
try of improving the area constraints implementation . Also
we will use benchmarks in order to compare the found
results with these algorithms.

This work has been partially supported by the TRACER
project (TIC-2002-04498.C05-1) of the Spanish
Technology and Science Ministery.

V.REFERENCES

[1] Xilinx Programmable Logic Devices. www.xilinx.com

[2] Femdndez de Vega, F. Modelos de programacidn
genética distribuida con aplicacién a la sintesis l6gica
de FPGAs.Ph. D. Thesis Universidad de Extremadura.
2000

[3] Hidalgo, J.I, Ferndndez, F., Lanchares, J., Séanchez,
J.M, Multi-FPGA Systems Synthesis by Means of
Evolutionary Computation. GECCO. LNCS 2724 pp.
2109-2020. 2003

[4] Dinesh P. Mehta, Naveed A. Sherwani: On the use of
flexible, rectilinear blocks to obtain minimum-area
floorplans in mixed block and cell designs, pp 82-97
.2000

[51 Koza, J.R. (1992) Evolution of subsumption using
genetic programming. In Varela, F.J. and Bourgine, P.
editors. 1992

[6] Holland, I.J. Adaptation in natural and artificial
systems. Ann Arbor: The University Michigan Press.
1975

[7] Lanchares, J., Desarrollo de metodologias para sintesis
y optimizacién de circuitos 16gicos multinivel. Ph. D.
Thesis.Universidad Complutense. 1995,

[8] MPICH Implementation,
wWWww- unix.mecs.anl.gov/mpi/mpich/

[9] List Of MPI Implementations.
http:/fwww-
unix.mes.anl. gov/mpi/implementations.html

[10] MPI Standard Definition.
http://www-unix.mes.anl.gov/mpi/mpi-
standard/mpi-report-1.l/mpi-report.htm

35

