NBP: Negative Border with Partitioning Algorithm for Incremental Mining of
Association Rules

Yasser ELSonbaty

Arab Academy for science and Technology

College of Computing and Information Technology

P.0O.box. 1029 Abu Kir, Alexandria
Egypt

Yasser@aast.edu

Abstract - Mining association rules is a well-studied
problem, and several algorithms were presented for finding
large itemsets. In this paper we present a new algorithm for
incremental discovery of large itemsets in an increasing set
of transactions. The proposed algorithm is based on
partitioning the database and keeping a summary of local
large itemsets for each partition based on the concept of
negative border technique. A global summary for the whole
database is also created to facilitate the fast updating of
overall large itemsets. When adding a new set of
transactions to the database, the algorithm uses these
summaries instead of scanning the whole database, thus
reducing the number of database scans. The results of
applying the new algorithm showed that the new technique
is quite efficient, and in many respects superior to other
incremental algorithms like Fast Update Algorithm (FUP)
and Update Large Itemsets (ULI).

1. INTRODUCTION

Data mining is the process of discovering potentially valuable
patterns, associations, trends, sequences and dependencies in
data [1-3][5][10][12]. Mining association rules is one of the
vital data mining problems. An association rule is a relation
between items in a sot of transactions. This rule must have a
statistical significance (support) with respect to the whole
database and its stmcture must have a semantic prospective
(confidence), as will be stated in more details later in section 3.
Recently, many interesting researches have been published in
association rules mining including mining of quantitative
association rules, multi-level association rules and parallel and
distributed mining of association rules [1-4][6][9][10].

As the database grows and more transactions are submitted,
the previously discovered rules have to be maintained, thus
discarding the rules that become statistically insignificant and
including new valid ones that satisfy the statistical and the
semantic constraints. In these situations, conventional
algorithms must re-process the entire updated databases to find
final association rules for each newly added set of transactions.
This strategy has proven to be inefficient in terms of time and
space complexities, since it does not benefit from the
previously discovered information. Many algorithms were
reported in the literature [11] [13 -15] [17] [18] for handling the
problem of incremental mining of association rules. A brief
discussion about these algorithms is shown in section 2. The
algorithm presented in this paper NBP: Negative Border with
Partitioning is based on partitioning the database, keeping a
summary for each partition. This summary includes the locally
large itcmsets, their negative border and any other previously
counted itcmsct in the partition. Another global summary

409

Rasha F. Kashef
Arab Academy for science and Technology

College of Computing and Information Technology

P.O.box. 1029 Abu Kir, Alexandria
Egypt

rashak@aast.edu

including the large and negative border itemsets for the whole
database is also created. When adding a new set of transactions
to the database, the NBP applies the Update Large Itemsets
(ULD-like algorithm [13] that uses these summaries instead of
scanning the whole database, thus reducing the number of
databasc scans to lcss than one scan, The rest of the paper is
organized as follows: the next section reviews related work,
Section 3 gives a description of the problem while section 4
presents the proposed algorithm. Section 5 describes
performance analysis of the proposed algorithm in comparison
with some related algorithms. Finally conclusions are discussed
in Section 6.

2. RELATED WORK

The Apriori algorithm [2] is the first successtul algorithm for
mining association rules. It introduces a method to generate
candidate itemsets Cy in pass & using only large itemsets Ly, in
the previous pass. The idea rests on the fact that any subset of
large itemset must be large as well. Hence, C;, can be generated
by joining L, and deleting candidates that contain any subset
that is not large. This would result in a significantly smaller
number of generated candidate itemsets. After Apriori, the
Direct Hashing and Pruning (DHP) algorithm [4] is the next
used algorithm for the efficient mining of association rules. It
employs a hash technique to reduce the size of the candidate
itemsets and the database. DHP has significant speed
improvements due to the reduced size of the candidate itemsets
generated. However, it causes additional overheads due to the
need to do hashing and to maintain a hash table.

Unlike the above discussed algorithms, the Continuous
Association Rule Mining Algorithm (CARMA)} [7] allows the
user to change the support threshold and continuously displays
the resulting association rules with support and confidence
bounds during the first scan or phase. During the second phase,
it determines the precise support of each item set and extracts
out all the large itemsets. Incremental mining is brought to
another new level when the adaptive algorithm [11] is
introduced. This algorithm is not only incremental but also
adaptive in nature. By inferring the nature of the incremental
database, it can avoid unnecessary database scans. The cost of
maintaining association rules can be considered once we know
the type of incremental database being mined. The Fust Updute
algorithm (FUP) is an incremental algorithm which makes use
of past mining results to speed up the mining process [15],
moreover, at finding the new large itemsets, the pool of
candidate itemsets can be pruned substantially. Also FUP uses
some optimization techniques for reducing the database size
during the updatc process. Basically, the framework of FUP is
similar to that of Apriori [2] and DHP [4]. It contains number

of iterations. The iteration starts at the l-itemsets, and at each
iteration, all the large itemsets of the same size are found.
Moreover, at each iteration the candidate sets are generated
based on the large itemsets found at the previous iteration.
Another version of FUP that deals with the case of transaction
deletion is FUP2 [16], it is based on the same technique on
FUP with addition to some optimization methods. Update
Large Itemsets algorithm (ULI) [13] uses negative borders to
decide when to scan the whole database and it can be used in
conjunction with any level-wise algorithm like Apriori ovr DHP.
The intuition behind the concept of negative border is that for a
given set Lg, the negative border contains the closest itemsets
that could be large too. First we compute the large itemsets of
the increment database. The algorithm requires a full scan of
the whole database only if the negative border of the large
itemsets expands, that is, if an itemset outside the negative
border gets added to either the large itemsets or its negative
border, Even in such cases, it requires only one I/ O Pass over
the whole data set. Recently Fast Online Dynamic Association
Rule Mining (FODARM) algorithm [18] is introduced for
mining in electronic commerce. It uses a novel tree structure
known as a Support-Ordered Trie Itemset (SOTrielT) structure
to hold pre-processed transactional data. It allows FODARM to
generate large -itemsets and 2-itemsets quickly without
scanning the database. In addition, the SOTrie/T structure can
be easily and quickly updated when transactions are added or
removed. Another algorithm for online generation of profile
association rules is introduced in [14]. The concept of profile
association rules discusses the problem of relating consumer
buying behavior to profile information. A New approach to
online generation of association rules [I7] introduces the
concept of storing the preprocessed data in such a way that
online processing may be done by applying a graph theoretic
search algorithm whose complexity is proportional to the size
of the output .

3. PROBLEM DESCRIPTION
The problem of association rules mining is described in the
following two subsections.

3.1 Mining of association rules

The problem of mining association rules is described as
follow: let the universal itemset, I = {ij, i;,.., i, } be a set of
literals called items , D be a database of transactions, where
each transaction T contains a set of items such that T < /. An
itemset is a sct of itcms and k-itemset is an itemset that contains
exactly k items. For a given itemset X< [and a given
transaction 7, T contains X if and only if X < T. The support
count o, of an itemset X is defined as the number of transactions
in D containing X. An item set is large, with respect to a
support threshold of 5%, if ¢, > |D| x s, where |D] is the number
of transactions in the database D. An association Rule is an
implication of the form “X =Y where X, Y cfand X N ¥ =&
The association rule X =Y holds in the database with
confidence ¢% if no less than ¢% of the transactions in D that
contain X also contain Y. The rule X= Y has support s% in D if
0wy = |D| *s%. For a given pair of confidence and support
thresholds, the problem of mining association rules is to find
out all the association rules that have confidence and support
greater than the corresponding thresholds. This problem can be

410

reduced to the problem of finding all large itemsets for the same
support threshold [1].

3.2 Updaling association rules

After some update activities, a new set of transactions is
added to the original database D. When new transactions are
added to the database, an old large itemset could potentially
become small in the updated database. Similarly, an old small
itemset could potentially become large in the new database. Let
A" be the set of newly added transactions (increment database),
D’ be the updated database where D" = (D \U A7), o, be the
new support count of an itemset X in the updated database D,
L” be the set of large itemsets in D, C; is the set of candidate
k-itemsets in D and d, be the support count of an itemset X in
the increment database A',

4. THE PROPOSED ALGORITHM

In this section, we develop an efficient algorithim for updating
the association rules when a new sct of transactions is added to
the database. The main objective of the proposed algorithm is
to minimize the number of scans needed to update the
association rules. This is to be done by partitioning the database
into n partitions, keeping a local summary for each partition.
These local summaries include large and negative border
itemsets for each partition. In addition, a global summary is
kept for the whole database; this global summary contains the
large and negative border for the whole database. When
updating the database in terms of adding a new set of
transactions to the database, the proposed algorithm NBP
applies the Update Large Itemsets (UL[)-like algorithm [13]
that uses these summaries instead of scanning the whole
database, thus reducing the number of database scans to a
fraction of one scan. The list of symbols that used in the
proposed algorithm is shown in table 1.

Table 1: Symbols of the proposed algorithm NBP

Symbol Definition

Q Partition size

e Cardinality of partition p,

L, Large itemset of partition p;
NBd(L,) Negative border itemsct of partition p;
NBd(L") Negative border itemset of original database D
NBd(L”) | Negative border itemset of updated database D

n Total Number of partitions

4.1 Algorithm description

The new algorithm can be described in two main steps
preprocessing step and updating steps. These steps are
described as follow:

Preprocessing step

In this step we divide the original transactional database into
n partitions each partition with size g. For simplicity we assume
g as a multiple of | A*| (for generality g can be of any size). In
the preprocessing step we evaluate for each partition p;; 1 =1,
2... n the large itemset L, with its corresponding negative
border itemset NBd(L,). Each itemset in L, or NBd(L,) is
stored with its corresponding support count in the partition p,.
Also we compute the large itemset L and negative border

itemset NBd(L") for the whole database D. The evaluation of
negative border itemsets for all the partitions and for the whole
database is done by calling the function Negriveborder gen (L)
that is described in Fig. 2. The Negtiveborder_gen takes a set of
large itemsets as input parameters and generates a set of
negative border itemsets. The Pscudo code of preprocessing
step is described in Figures 1, 2.

Function preprocessing (D, n,q)
Divide the original database into n partitions, each partition with size g

fori=1to ndo

Lpi = large-itemset for partition p;

NBd(L,)=Negtiveborder_gen (L,)
LP = large-itemset for the whole database
NBd(L") = Negtiveborder - gen (L7

Fig. 1. A high-level description of preprocessing step

Function Negtiveborder_gen (L)
Split L into Ly, Ls,.., L, , r is the size of the largest itemset in L

Forall k=1, 2,,rdo
Compute Ciy; using apriori-gen(Ly) //Apriori[2]

LUNBA(L) = Uiey, 1 Ce UL, where | is the set of I-itemset

Fig. 2. The of Negativeborder gen function.

Updating Step

After the preprocessing step, we have a set of # partitions
with their corresponding large, negative border itemsets and the
large, negative border itemsets for the whole database. For
updating the database D a new set of transactions A" is added to
the database. With the assumption that partition size g is
multiple of the increment database size |A"|, A" is added either
to the last partition or to a new partition according to space
availability. If A” is added to a new partition, the large and
negative border itemsets are evaluated by using Adpriori as a
level wise algorithm (dpriori [2] generates large itemsets, and
we can get the negative border itemsets by applying the
function Negtiveborder gen(l) to the resulting large itemset
obtained from Apriori algorithm). If A" is appended to the last
partition then we have to update the large itemsets L, and
negative border itemsets NBd(L,,) of the partition p, using the
Negative Border with Partitioning function NBP(p,, A*, p,).
NBP function takes the original database, the increment
database and set of partitions to search through as input
parameters and it updates the large and negative border itemsets
of the original database as shown in Fig. 3.

After updating the last partition, the next step is to update
large L” and negative border itemsets NBd(L”) of the whole
database D to obtain the updated large and ncgative border
itemset of the updated database D' . First we compute the large
and negative border itemset of the increment database A’
simultaneously we evaluate the support count for all itemsets x
belonging to both large and negative border itemsets of the
original databasc in A", If x passcs the minimum support count
in D, then x is added to the updated large itemset otherwise x is
added to the updated negative border itemset. If some itemsets
found in A" passed the minimum support count of the updated
database while they are not found in either large or negative
border itemsets of the database D then they can join the updated

411

large itemset, otherwise they are added to the negative border
itemset of the updated database. The proposed algorithm can be
described in terms of the NBP (D, A", Partitions) function as
described in Fig. 3.

Function NBP (D, A*, Partitions)

LP= &, NBA(L®)= ®, Large_to_Large = ® and Negative_to_Large =
@ // initialization

Compute L*", NBA(L*") //using Apriori {2] and Negtiveborder gen [13]
I[|pu|<gq then
Add A" top, and update the partition p,,
else s+, Add A" to the new partition ,Compute L,,, NBd(L,,)
For each ilemsel x e L”
if (o, +d, = s * (|D| + A")) then
/1 5 : minimum support threshold
add x to both £”"and Large_to_Large
else add x to NBA(L”)
For cach itemsct x € NBd(LP)
if (o + = s * (D[+ A7) then
add x to both £° and Negative to_Large
else addx to NBd(L")
For cach itemsetx L,°" U NBd(L™) ,x& L% andx & NBA(LP) do

if (o, +J¢ = s * (ID| H A") then
add xto L7
else addx to NBd(L”)
if L” = Lthen
ULNBA(L” \NBA(L”). Large_to_Large, Negative_to_Large, Partitions)

Fig. 3 NBP algorithm using function NBP ()

The updating process of L? could also potentially change
NBA(LP). Therefore some itemsets may be missed in both the
updated large and negative border itemsets. We define two sets
Large to_Large (set of itemsets that still large after updating
the database D) and Negative_to_Large (set of itemsets that
moved from the original negative border itemset to the set of
updated large itemset). We need to get all the possible
candidates that can be generated from the set of itemsets that
cross the negative border to become large itemsets, so we join
Negative_to_Large with Large _to_Large to get a new set called
Self Join_Set, and this is to be accomplished by calling the
function join (Lg,) which joins a set of large itemsets with
length (k- 1) with itself to get Cya set of candidate itemsets with
length k. The function join (L) is described in Fig. 4,

Yunction join (L)
For cach X, Y L., do

il Xitem; = Y.item,,.. X.item;.; = Y.itemy z, X.itemy.; < Y.item.; then
Z = Xitem, X.item,,.,, X itemy.; Y.item;, Insert Z into Ci

For all itemscts ¢ € Cydo /pruning step
For all (k1) subsets x of ¢ do

if(x @& Ly then delete ¢ from Gy

Return Gi

Fig. 4. High Level Description of the join function

The updating of the support count of each itemset belongs to
the Self Join_Set set is done by calling the Update Large
Negative Border function ULNBd. For cach itemset ¢ &
Self Join_Set, check all partitions p,, i= 1,2, ..., n. [f tis found
at the large itemset L, or negative border itemset NBd(L,) of
the partition p;, then update the support count of «. If ¢ is not
found in cither L, or NBd(L,) then scan partition p; to get the
support count of ¢ Scanning a partition is done once for all
itemsets need to be scanned in this partition. This means, we
only need maximum of one scan for the whole database (all
partitions) at worst case. In general, the proposed algorithm
needs a fraction of a scan to update the large and negative
border itemsets for the updated database. We use the hash tree
structure (Apriori [2]) to get the support count of a set of
itemsets within this partition. If the support count of ¢ >
minimum support count of D', then add ¢ to updated large
itemset L”'; otherwise add f to updated negative border itemset
NBA(L"). The pseudo code of the function ULNBd () is given
in Fig, 5.

ULNBd (L”,NBd(L”),Large_to_Large, Ni egative_te_Large,
Partitions)

// generate all possible candidates “Self Join_Set"” for the set of //large
items in the updated databasc D

Self Join_Set;= ®
// initializc Self Join_Set of lengthl to be cmpty
Fork=1,2, ..., £ do
//U:size of the largest itemsct in Negative_to_Large
LL= sct of itemscts with length & from Large_to_Large
NL¢= sct of itemscts with length & from Negative to Large
Self Join_Sety.; = join(LLy \J NLg \J Self Join_Sety)
For each itemset te Self Join_Set do
Feri=1, 2, ...ndo

H search all partitions for updating the support count of all /elements
found in Seff Join_Set

o, =0 // initialize support count of ilemset ¢
ift e L, then
;= g, + support count of 1 in L,
clse if ¢ € NBd(L,;) then
0, = g, + support count of ¢ in NBe(L,.)
clse addzto p;_itemscts
Fori=/, 2, ..., ndo
if p, _itemsets # @ then
Scan p, to get support count of cach itemsct x € p; _itemsets
/fscanning using hash trec structure (Apriori [2])
For each itemset ¢+ € Self Join_Set do
if g, = s*(JD] H A" then
add ¢ to L

else add to NBd(L")

Fig. 5. Update Large and Negative Border of D using ULNBd
() function

The number of scans over the whole database needed for NBP
algorithm is varying from 0 to 1. The zero scan is obtained
when the information needed after adding the increment

database is found in either the global summary of the whole
database or the local summary in each partition. The one scan is
occurred at the worst case when the algorithm needs to scan all
partitions (whole database) to get the count of some itemsets, In
general, the algorithm needs a fraction of a scan to reach the
final results.

5. PERFORMANCE ANALYSIS
In this section, the proposed algorithm is tested using several
test data to show its efficiency in handling the problem of
incremental mining of association rules.

5.1 Generation of synthetic data

In this experiment, we used synthetic data as the input database
to the algorithms. The data are generated using the same
technique as introduced in [2], modified in [4] and used in
many algorithms like [13] and [15]. Table 5 gives a list of the
parameters used in the data generation method.

Table 5: Parameters for data generation

1D Number of transactions in original database
1D’ Number of transactions in the updated database
|AT Number of added transactions

171 Mean size of transactions

| £ Mean size of potentially large itemsets

1 €] Number of potentially large itemsets

N Number of items

In the following we use the notation Tx.Iy.Di+d , modified
from the one used in [2] , to denote an experiment using
databases with the following sizes |D| = i thousands, |A'|=k
thousands, |7]= x, and |[/|=y . In the Experiments we set N=1000
and [£/=2000. The increment database is generated as follow:
we pgenerate 100 thousand transactions, of which (100-d)
thousands is used for the initial computation and d thousands is
used as the increment, where 4 is the fractional size (in
percentage) of the increment.

5.2 Experimental results

In cach experiment, we run the proposed algorithm MNBP on
the generated synthetic test data. We compare the execution
time of the new incremental algorithm NBP with respect to
running Apriori on the whole data set and some other relevant
incremental algorithms. The proposed algorithm is tested using
the settings T10.14.D100+4. The support threshold is varying
between 0.5% and 3.0%.

5.2.1 Changing partition and increment database sizes

For simplicity we assumed that the partition size ¢ is a
multiple of the size of the increment database |A*|. We run the
algorithm for ¢ = 1, 2, 5, 10 multiples of | A”|. Figures 7, 8 and
9, show the experimental results when applying the new
algorithm NBP on the same test data with ¢ is 1%, 2% and 3%
respectively. The support threshold is varying from 0.5% to
3.0% in each experiment. Tt can be concluded from Figures. 7,
8 ,and 9 that when applying the NBP algorithm on the test
data it achieves an average speed up ranging from 6 to 67,
from 4 to 37 and from 2 to 14 respectively in comparison with
Apriori algorithm.

rrﬂ T —=a 70 .""ﬂ

3 25 2 15 1 0.75 05

Support Threshold (%)

Fig. 7. Performance Ratio of NBP at |A+\= 1%

-1 A+
2 A+
-5 A+
310 A+

2
NS .
irﬁfrn ~m-m .r‘rﬂ
25 2 15

1 075 05

Support Threshold{ %)

Fig. 8, Performance Ratio of NBP at |A |= 2%

D1 A+
12 A+
o5 A+
£10 A+

'-‘.

: ‘ﬁl—ﬂ"'-‘m,‘frﬂ.fj:ﬁﬂj
2 15 1

I
075 05

J,

w4 |I|
!

25
Support Threshold (%)

Fig. 9. Performance Ratio of NBP at |A |= 5%

From Figures 7, 8 and 9, it is noticed that the proposed
algorithm shows better performance for high support than low
support. At high support thresholds, the possibility to get new
large itemsets from the original negative border is low so the
searching time within the large and negative border itemsets of
the partitions is small. At low support thresholds, there is a high
probability of getting more new large itemsets immigrating
from the set of negative border to the set of large itemsets. This
increases the possibility to scan most partitions causing the
increase of execution time. Also, the speed up of the proposed
algorithm is higher for smaller increment sizes since the new
algorithm needs to process less data. It is also noticed that the
NBP algorithm achieves better performance when the partition

+
size is five times of the increment database A and the size of
increment database is 1% of the whole database.

5.2.2 Comparison with FUP

FUP [15] may require O (k) scans over the whole database
where k& is the size of maximal large itemsets, while the new
NBP algorithm needs a fraction of a scan to update the results,
In this experiment, we run both the proposed algorithm NBP

413

and FUP algorithm on the previous test data used in section
5.2. For support threshold varying between 1.0% and 3.0%, and

| A+| =1%,Fig. 10 shows that the proposed NBP algorithm has
an average speed up ranging from 4 to 12 against FUP
algorithm.

a

=

w

%

£

]

E3 ——NBP/FUP|
[=%

=)

o

3 24

[=9

w0 ey

3 25 2 15 1 07505
Support Threshold (%)

Fig. 10. Speed up of NBP against FUP

From Fig. 10, it is shown that at high support threshold, the
proposed NBP algorithm may need a fraction of a scan or zero
scan, while FUP needs & scans over the database (4 is small at
high support threshold), and that explains the better
performance of NBP algorithm in comparison with FUP at high
support threshold At low support threshold, NBP needs 1 scan
(worst case) but FUP needs & scans (k is large at low support
threshold). That is why the speed up of MBP is higher at low
support threshold than at high support thresheld in comparison
with FUP algorithm. It is noticeable from Fig. 10 that at average
value of support threshold, the speed up of NBP in comparison
with FUP may fluctuate; this is because the NBP reaches the
case in which the algorithm generates a large number of local
summaries at smaller support threshold or at sometimes there is
a possibility to scan more partitions for discover the count of
the new generated items.

5.2.3 Comparison with ULI

Tt is costly to run ULJ [13] at high support thresholds where
the number of large itemsets is less and at low support threshold
the probability of the negative border expanding is higher so
ULI may have to scan the whole database. In this experiment
we run both the proposed algorithm NBP and UL! on the
previous test data. It is concluded from Fig, 11 that for support

threshold varying between 0.5%and 3.0%, and | A+] =1% The
NBP algorithm has an average speed up ranging from 0.8 to 20
against the ULJ algorithm,

25

20

—+—NBP/ULI|

Speed Up against ULI
=)

3 25 2 15 1 07505
Support Threshaold (%)

Fig. 11. Speed up of NBP against ULT

From Fig.11, at high support threshold NBP may need a
fraction of a scan or zero scan, while JL/ needs one scan over

the database. At low support threshold both NBP and ULJ need
almost one scan that is because NBP at worst case performs like
ULI and may need a one scan over the database to discover the
count of new generated itemsets. NBP performs like UL/ at the
worst case for low support threshold.

6. CONCLUSIONS

In this paper a new algorithn NBP: Negative Border with
Partitioning is presented for incremental mining of association
rules. The proposed algorithm is based on partitioning the
database, keeping a summary for each partition. This summary
includes the locally large itemsets, their negative border and
any other previously counted itemset in the partition. Another
global summary including the large and negative border
itemsets is also created for the whole database. When adding a
new set of transactions to the database, the NBP applies a UL/-
like algorithm that uses these summarics instead of scanning the
whole database, thus reducing the number of database scans to
less than one scan.

From algorithm discussion and experimental results, the
following points can be concluded.

1. The new algorithm ANBP, can efficiently handle the
problem of incremental mining of association rules.

2. The number of scans over the whole database needed
for NBP algorithm is varying from 0 to l. The zero
scan is obtained when the information needed after
adding the increment database is found in either the
global summary of the whole database or the local
summary in each partition. The one scan is occurred
at the worst case when the algorithm needs to scan all
partitions (whole database) to get the count of some
itcmsets. [n gencral, the algorithm needs a fraction of
a scan to reach the final results.

3. NBP achieves high speed up from 6 to 67 for support
threshold varying from 0.5% to 3.0% against the
Apriori algorithm.

4. NBP shows better performance than the algorithms of
FUP and ULI

7. REFERENCES
[1] R. Agrawal, T. Imielinski and A. Swami. “Mining
Association Rules between Sets of Items in Large
Databascs”. Proc. ACM SIGMOD. Int Conf, 1993,

[2] R. Agrawal, and R. Srikant. “Fast Algorithms for Mining
Association Rules”. Proc.. Very Large Data bases .Int
Conf, 1994,

[3] R. Agrawal, and J. C. Shafer, “Parallel Mining of
Association Rules”, JEEE Trans on Knowledge and Data
Engineering, 1996.

[4] J. S. Park, M. S. Chen, and P.S. Yu. “Using a Hash Based
Method with Transaction Trimming for Mining
Association Rules”. JEEE Trans on Knowledge and Data
Engineering, 1997.

[5] C. C. Agrawal, and P. S. Yu, “Mining Large Ttemsets for
Association Rules”, Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 1998,

[6] A. Sarasere, E. Omiecinsky, and S. Navathe. * An Efficient
Algorithm for Mining Association Rules in Large

414

Databases”. Very Large Databases (VLDB)., Int Conf.
1995,

[7] C. Hidber. “Online Association Rule Mining”. Proc. ACM
SIGMOD Int Conf. Management of Data, 1998.

[8] I. Han, J. Pei, and Y. Yin. “Mining Frequent Patterns
without Candidate Generation”. Proc. ACM SIGMOD. Int
Conf. on management of Data,2000.

[9] J. Han and Y.Fu. “Discovery of Multiple-Level Association
Rules from Large Databases”. Proc. Very Large data
Bases. Int conf,1995.

R. Srikant and R. Agrawal. “Mining Quantitative
Association Rules in Large Relational Tables”. Proc. ACM
SIGMQD Int Conf on management of Data, 1996.

[I1] N. L. Sarda and N. V. Srinivas. “An Adaptive Algorithm
for Incremental Mining of Association Rules”. Proc
Database and Experts systems. Int Conf , 1998,

[12] H. Mannila, H. Toivonen, and A. I. Verkamo, “Efficient
Algorithms for Discovering Association Rules”. Proc.
AAAI Workshop on Knowledge Discovery in databases
(KDD-94) ,1994.

[13] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. “An
Efficient Algorithm for the Incremental Updation of
Association Rules in Large Databases”. Proc. Knowledge
Discovery and Data Mining (KDD 97). Int conf, 1997,

[14] C. C. Aggarwal, Z. Sun, and P. S. Yu, “Fast Algorithms
for Online Generation of Profile Association Rules”, [EEE
transactions on knowledge and Data Engineering, 2002.

[15] D. W. Cheung, J. Han, V.T. Ng, and C. Y. Wong.”
Maintenance of Discovered Association Rules in Large
Databases: An Incremental Updating Technique”. Proc.
Data Engineering. Int Conf, 1996.

[16] D. W. Cheung, S. D. Lee, and B. Kao, “A General
Incremental Technique for Maintaining Discovered
Association Rules”. Proc. Database systems for Advanced
Applications, Int Conf, 1998.

[17] C. C. Aggarwal, and P. S. Yu,” A New Approach for
Online Generation of Association Rules”, JEEE
transactions on Knowledge and Data Engineering, 2001

[18] Y. Woon , W. Ng and A, Das , “Fast Online Dynamic
Association Rule Mining” , IEEE transactions on
Knowledge and Data Engineering ,2002.

(10]

