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Abstract — When Parallel Evolutionary Algorithms are
used for solving optimization problems, their objective is to
find an optimal solution wusing a limited amount of
computation. Given these requirements, a good balance
between exploration (or diversification) and exploitation (or
intensification) is difficult to find. This balance can be found
by tuning the various parameters of evolutionary algorithms:
selective pressure, population size, mutation and crossover
operators and their probabilities, among others., Such
variations of the parameter settings in the different
subpopulations generate the so-called heterogeneous Parallel
Evolutionary Algorithms. These algorithms represent a
promising way for introducing a correct
exploration/exploitation balance in order to maintain the
pepulation diversity and find good final solutions.

This paper presents heterogenecus parallel evolutionary
algorithms that apply different crossover operators and
selection methods to each subpopu lation. Our objective is to
analyze the way in which such heterogeneity affects the
search process, by considering the influence of selective
pressure and the disruptiveness of recombination operators.

Experimental results show that our heterogeneous
approaches outperform the homogeneous ones with regard to
both population diversity and present similarities in the
comparation of best found solutions.

L INTRODUCTION

Evolutionary algorithms (EAs) are capable of solving
complicated optimization tasks in which an objective
function f : /7 — R shall be optimized, Since the crossover
operator and the selection operator (which operates on the
principle that the fitter survives) produce serious adverse
effect during the evolution, their employment may
decrease the degree of population diversity and degrade the
search capability of the EAs [41].

Diversity preservation methods based on the partition of
the population have been proposed in order to avoid
premature convergence [14, 16, 29, 31, 32 33, 35 39].
Parallel Evolutionary Algorithms (PEAs) try to introduce
diversification more naturally by spatial population
structure.

PEAs are becoming an important branch of research
since they provide a faster and more efficient way of
solving known and new problems. There has been
extensive research on this field. Different surveys such as
[13, 5 1, 22, 27], collect, organize, and present the most
representative publications on this area.

Making distinctions between the subpopulations of
PEAs by applying EAs with different configurations
(genetic operators, parameters, representations, etc), we

obtain the so-called heterogeneous PEAs.
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This paper presents heterogeneous approaches, which
apply different crossover operators and selection methods
(to create the mating pool) in the diverse subpopulations,
to solve a hard constraint problem: the satisfiability (SAT)
problem [15, 19]. In this way, we propose simultaneous
combinations of the selective pressure and  the
disruptiveness of the recombination operators.

In the following section, we describe the SAT problem.
In Section I we introduce concepts over selection
methods and crossover operators. While in Section IV we
present a brief review of PEAs. In Section V, we
summarize and extend the results in order to amalyze and
compare the different selection heterogenecus  and
homogeneous PEAs proposed in this work. Finally, the
conclusions and future works are presented.

IL

In a propositional problem (SAT) a propositional formula
is given and a truth assignment for its variables is sought
that makes the formula true. Without loss of generality, it
can be assumed that the given formula is in conjunctive
normal form (CNF), ie. it is a oonjunction of clauses
where a clause is a disjunction of literals. In the 3-SAT
version of this problem it is also assumed that the clauses
consist of exactly three literals (&=3) and a increase
number of variables (n = 20, 30 .. 1000) as a form to
increase the complexity of the problem.
The expression has to be in conjunctive normal form (also
known as a "product of sums"), in which each of the /
clauses contains exactly three terms:

Euv PV PE) AP vV PRy P3) A APV DY B3)
In this expression, each p, is either one of the n free
variables occurring in the expression ({x1,%,...x,}) or the
negation of one of those ({—x;, —wy,.., —x,}). For every i
a clause should contain at most one of x, /—x. A solution is
a valuation (val(x), val(x),.., val(x,) in which each
val(x) € true,faise, such that the expression yield true.
The corresponding decision problem is one of the most
intensive studied NP-complete problems.

SAT PROBLEM

III.  GENETIC OPERATORS

The crossover operator and selection have been
characterized by their contribution to the explorative and
exploitative aspects of the search.  When the balance
between these aspects is disproportionate can produce a
lack of diversity on the population [26, 28 34]. In this
section, we present an overview of basic ideas about
selection methods and crossover operators.



A.  Selection Methods

Selection mechanisms favour reproduction of better
mdividuals imposing a direction on the search process.
Rather than creating new individuals, it selects
comparatively good individuals from a population for
mating. The idea is to generate a competition among
individuals with higher fitness because they have a higher
probability to be selected for mating. In that manner,
selection introduces the influence of the fimess function to
the evolutionary process [11, 12, 17, 20, 30], because the
fitmess of an individual gives a measure of its “goodness”.
Moreover, selection is the only operator of a genetic
algorithm where the fimess of an individual affects the

evolution process. In such a process two important,
strongly related, issues exist: selective pressure and
population diversity [6].

The selection mechanism has a great responsibility for
the diversity of the population [24]. It may maintain or

eliminate  diversity depending on its cuments selective
pressure, which represents the degree to which the
selection mechanism favours the better individuals. If the

selective pressure is high then the best individuals are
preferred, supplying a large number of copies (which
means fewer copies for the rest of the population) and as a
result the population diversity is lost. On the other hand,
with low selection pressure, the diversity is kept.

In the following we briefly consider four methods that
we used in our implementation, a complete description can
be found, for example, in [7, 30]. In linear proportionate
selection the probability of selecting an individual depends
linearly on it fitness [25]. Ranking selection orders the
individuals according to their fitness. The selection
probability 1s, then, a function of the rank [40].
Toumament selection [8] selects the best / out of &
individuals. In the Stochastic Universal Sampling (SUS)
[9], the individuals are mapped to contiguous segments of
a line, such that each individual's segment is equal in size
to its fimess. Here equally spaced pointers are placed over
the line as many as individuals have to be selected.

In [6] have been analysed and compared all important
selection mechanisms. From that research arises that the

selective pressure increases in the following order:  SUS,
proportional  selection, linear ranking, and toumament
selection.

B.  Crossover Operators

The crossover operation fries to combine good

characteristics from different parents selected in order to
yield a new individual. Then this kind of operators is
merely explorative.  After all, their goal is to create
variation, The main idea is the crossover’s ability for
combining and/or disrupting pieces of information. That is
strongly related with the creation and reduction of diversity
in the population.

The #-point crossover randomly chooses n  crossover
points and cuts the two parents of length L into n + I
segments (the same points in both parents). After that, it
creates child, putting together the odd segments from the
first parent and the even segments from the second one.
Child, is created by taking the opposite decisions. Usually
1-point or 2-point crossover is used.
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A further generalization of n-points crossover is the
uniform crossover [36, 38]. For each bit in child;, uniform
crossover decides (with some probability pp) which parent
will contribute its value in that position. The second child
would receive the bit from the other parent.

v, PARALLEL EVOLUTIONARY ALGORITHMS

A parallel EA (PEAs) is obtained by the inclusion of
parallelism in the operation of EAs. So, PEAs allow: the
use of greater populations and the solution of more
complex problems with bigger dimensions.

There are three main types of parallel EAs [18]: global
single-population [23], fine-grained EAs [29, 37, 32] and
coarse-grained EAs [10, 21, 39]. We are interested in the
last kind of PEAs.

The coarse-grained, or distributed population model,
also known as the island model, consists of a number of
subpopulations or “demes”.  Each one of them being
processed by an EA, independently from others. With
some migration frequency they exchange individuals
between each other over a certain communication
topology. The PEAs attempt to overcome the premature
convergence by means of the preservation of diversity due
to the semi-isolation of the subpopulations.

The island model is a very popular parallel model,
because it is very easy to implement on a local network
with standard workstations (cluster).

Regarding how similar the EA processes are on different
islands, two different types of PEAs can be distinguished:

e Homogeneous EAs: on each island the same
parameter  settings,  objective  function,  genetic
operators and encoding methods are used.

e Heterogeneous EAs: on each island different
parameter configurations can be used; in this way
different evolutionary behaviour is achieved in each
subpopulation, The differences in the evolution result
from the wvaration of the following characteristics:
parameter  seftings,  objective  function,  genetic
operators and encoding methods.

The majority of PEAs research deals with the first type.
However, the last kind is in progress and some results can
be found in [27, 2, 24].

The heterogeneous PEAs, proposed here, show
differences in the evolution behavior by varying crossover
operators and selection methods for mating in the diverse
subpopulations. With that heterogeneity, simultaneous
combinations of the selective pressure and  the
disruptiveness ~ of  the  recombination operators  are
generated.

The migration mechanism allows the interchange of
individuals among the subpopulations. This allows the
cooperation by means of exploitation of promising areas,
found by other islands, and reintroduction of genetic
material, which was lost in the population. This
cooperation is more adventageous for heterogenous PEAs
since the islands with more selective pressure distribute
their best individuals to the rest and benefit by the
incorporation of genetic material, which was lost due to the
influenice of high selection pressure.



¥ IMPLEMENTATION AND EXPERIMENTAL RESULTS

A, Implementation

All experiments were conducted on our homogeneous
cluster of Intel based machines. Each of the machines
utilizes the Slackware distribution of the Limux operating
system (version 9.1). In each experiment, eight islands
were created. Regarding selection methods (see Table 1),
in the first two cases heterogeneous PEAs were employed,
which wuse different selection methods for the parent
selecion i each subalgorithm. While in the last cases,
homogeneous PEAs were implemented. All these PEAs
were carried out under the three following situations:

1. All islands used the One Point Crossover (OP).

2. All islands used the Uniform Crossover (UX),
3. Some islands used One Point Crossover and
others Uniform Crossover (OP+UX).
In the last situation, the seven obtained PEAs are

heterogeneous because different crossover operators were
considered.
For naming PEAs the following rule is applied:

<Name Case> + <Crossover Method>
for example: if HomP and OP are used, the name is
HomP-+OP. These combinations sumtnarize 21 algorithms.

These algorithms were mmn under MALLBA software
[3, 4], which was created by research group from Malaga,
La Laguna and Barcelona Universities.

Five instances for the 3SAT were considered (see Table
2). Each PEA was run 50 times. The following PEAs
genetic operators and parameters were kept constant
throughout all of the testing: bigcreep mutation, crossover
probability = 0.65, mutation probability = 0.01, population
island size w = 30 (all initial populations were randomly
generated), total generations = 10000,

The replacement strategy to create the population for the
next generation was W + A, with A=30, while individuals
were chosen by proportional selection.

Five migrants are selected by toumament selection with
k=3, and the target island selects individuals using
tournament selection with & =5 and each one is replaced if
the incoming one is better. The migration frequency is

given each 25 generations. The sub-algorithms are
disposed in an unidirectional ring with asynchronous
communications (the checking of solutions from other

populations is performed all generations).

TABLE 1: SELECTION METHODS FOR EACH EXPERIMENT

Case Selection Method
2 islands with proportional selection, 2 with
Hetl  |binary tournament, 2 with SUS and 2 with
random selection.
2 islands with proportional selection, 2 with
H binary tournament, 2 with SUS, 1 island with
et2 ; . 4
random selection and other with linear
ranking selection.
HomP [|Proportional selection (P)
HomRl  |Linear ranking selection (R1). 17, =1.5
HomR [Random selection (R)
HomS [SUS
HomT [Binary tournament (T)
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TABLE 2: 3-SAT INSTANCES

Instance | #Variables #Clauses
3 30 129
5 40 172
6 40 172
7 50 215
10 100 430

B. Variables de Performance

The following relevant paformance variables were chosen:
ebest= (Abs(opt_val — best value)opt_val)100
It is the percentile error of the bestfound individual when
compared with the known, or estimated, optimum value
opt_val. It gives us a measure of how far we are from that
opt_val.
epop = (Abs(opt_val- pop mean fitness) opt_va))100
It is the percentile error of the final population mean
fitness when compared with opt val. It tells us how far
the mean fitmess is from that opt_val.
SR = (Success Rate). It is the percentile of tte number
of times that the optimum was found.
Bigs = (measure for final population diversity). The
population  diversity was introduced by Back and
Hoffmeister [3], in terms of the bias measure defined by
Grefenstette [13] as follows;

1 : L t 2 t
b(P(t))=— Zm Z(i —a; ;), zai“f
I pa i i
;=0 ‘d.,':]

where [ is the chromosome length and o' denotes the
allele value. The bias & (0.5 & < 1.0) indicates the
average percentage of the most outstanding value in each
position of the individuals. Smaller values of 4 indicate
higher genotypic diversity and vice versa. The bias b can
be used to formulate an adequate termination criterion.

C.  Comparison and experimental resulls

In Tables 3 and 4, mean values for ebest SR, epop and
bias were established. Those values average the results from
all instances.

As regard ebest values, independently of selection
methods employed, better results are obtained if UX is
applied; meanwhile the OP+UX option plays an intermediate
role between OP and UX roles. OP+UX combination
achieves more times the optimum (the highest SR values in
Table 3) but its ebest value is lower than the obtained for UX.
This indicates that the rest of the best-found solutions for
OP+UX have less quality than the ones of UX.

Analysing epop values (Table 4), independently of
selection methods employed, a similar situation to the one
observed with ebest values is presented; meaning that the
phenotypic diversity is decreased by considering UX. But at

TABLE 3: SUMMARY OF EBEST AND SR VALUES

ebest SR

UX | OP | OP+UX| UX OP OP+UX
Hetl 041] 051 044 23.60| 20.80 22.80
Het2 0421 047 041] 42.40| 43.60 43.20
HomP 2211 229 2.24 1.20 040 1.60
HomRl | 0.59| 0.67 0.60( 47.60| 46.80 47.60
HomR | 244| 254 246 0.00 0.40 0.80
HomS 210 224 2.13 040 0.80 2.00
HomT 036] 041 0361 46.80] 46.00 47.60




TABLE 4: SUMMARY OF £POP AND BidS VALUES

epop bias

UX OP OP+UX | UX | OP | OP+UX
Hetl 7.04 8.28 822| 092] 091 0.91
Het2 727 7.44 735| 091 092 0.92
HomP 10.22( 10.30 10.33| 0.89| 050 0.90
HomRl 355 381 366 094 054 0.94
HomR | 11.00] 10.98 10.95| 0.89| 050 0.90
HomS 10.21] 10.13 10.13( 0.88| 089 (.89
HomT 160 1.68 166] 097] 097 0.97

the same time, their bias values are generally lower than the
ones obtained for the remainder options. This can indicate
that UX operator generates a slight bigger disruption than the
others, increasing in this way the genetic diversity. In other
words, UX has a biggest amount of quite similar solutions
near the optimum (lower epop values), but with different
genetic conformations (lower biags values). This gives a wide
set of diverse and good quality solutions.

AFPs approaches with high selective pressure (HomT and
HomRl) show good quality solutions (se¢ ebest and epop
average values). Particularly all individuals from the final
population present similar genotypic characteristics, it can be
corroborated with the high mean bias values. As was to be
expected, the remainder homogeneous PEAs obtain varied
results in the final population (greater epop values and lesser
mean bias values) without finding individuals so good as
HomT and HomRl. The Hetl and Het2 options, proposed to
preserve the diversity in the population, obtain good
quality solutions (mean ebest values close to cero) and a
set of very varied individuals (mean epop values near to
10% and mean bias values close to 0.91). In this way the
good results, obtained from toumament and linear ranking
selection methods, are combined with a big solution
variety in the final population supplied for the other
selection methods. This diversity in the final population
allows finding alternative solutions near the best-found
solutions, and then a static algorithm can be adequate to
changes in the problem context.

Considering the study about the influence of both
crossover operators and selection methods, the following
observation can be made: the resultant heterogeneous
PEAs have generally an intermediate behaviour between
the homogeneous algorithms with low selective pressure
plus OP application and the homogeneous ones with high
selective pressure plus UX. Other point can be observed:
the selection methods exercise greater influence on the
PEA behaviour than the distinct disruptiveness degrees

Fig. 1, 2 and 3 show ebest, epop and bias values,
respectively, for each PEAs considering only instance 6,
because it is the most representative instance.

Analysing ebest values from Fig 1, independently of the
crossover method implemented, the following observation
arises: HomR, HomP and HomS (algorithms that use
selection methods with low selective pressure) produce a
decrease in the solution quality. Meanwhile the error
remains under 1% for the rest of the algorithms.

Again only having into account the selection methods,
from Fig, 2 the following reflection can be done: PEAs
with selection methods having high selective pressure
obtain low population errors; while the rest of the options
is grouped under an error next to 10.5%. Population errors
next to 0% mean that the individuals belonging to the final
population have biggest phenotypic similarities. Although,
Hetl and Het2 heterogeneous PEAs obtain  similar
percentile population emors to the ones achieved for the
homogeneous PEAs with low selective pressure (Fig. 2),
the first obtain good final solution qualities (see Fig. 1).

The selective pressure is reflected on the bigs value (Fig.
3): a lesser bias value means a lower selective pressure,
Regarding both this figure and the selective pressure, the
following increasing order of PEAs can be obtained
HomS, HomRo, HomP, Hetl, Het2, HomRl and finally
HomT. In this way, the heterogeneous algorithms (Hetl
and Het2) combine advantageous characteristics of
algorithms with different selective pressure degrees. That
means, these algorithms associate the population variety,
supplied for the algorithms orientated to the exploration
(low selective pressure), with the concentration of the
search to the best individuals given for the algorithms
orientated to the exploitation (high selective pressure). So
the Hetl and Het? heterogeneous algorithms achieve a best
equilibrium between exploration and exploitation.

VL  CONCLUSIONS

In this paper, the reaches in the application of different
selection methods and crossover operators in homogeneous
and heterogeneous parallel evolutionary algorithms were
studied. The motivations for that were keeping the
population diversity and obtaining quality in the solutions.
The heterogeneity is used to combine advantages from
each selection methods and crossover operators. Besides it
is used to analyse the possible improvement in the balance
between exploration and exploitation of the search space.
For analysing the effect of this heterogeneity the following

supplied for the different crossover kinds. aspects are evaluated: the quality of the best-found
ehest
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individual and the final population, the evolution of the

population diversity and the number of times that the
optimal value was found.
The  heterogeneous PEAs, proposed here, show

differences in the evolution behavior by varying crossover
operators and selection methods for mating in the diverse
subpopulations. Five selection methods and two crossover
operators were used. The selection methods considered

were: proportional, linear ranking, toumament, random
and stochastic universal sampling. Meanwhile the
CTOSSOVET  Operators — were: one-point and uniform
CrOSSOVET.

The important point, which is deducted from this job, is
the greater equilibium between population diversity and
the good final solutions obtained by the heterogeneous
parallel  evolutionary  algorithms.  Therefore,  these
algorithms can combine the characteristics from the
selective methods as many as the ones from crossover
operators. In other words, the islands with more selective
pressure cooperate distributing their best individuals to the
rest and benefit by the incorporation of genetic materal,
which was lost due to the influence of high selection
pressure, Furthermore, the diversity maintenance is helped
for those operator crossovers with high disruption degree.

Our experiments show that the combinations of a proper
selective pressure and adequate crossover disruptiveness
enhance the evolutionary behaviour.

Due to the good results obtained, further research will be
oriented to deeper study of the heterogeneity by the
modification of other algorithmic parameters.
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