
Modelling of Polycrystalline Microstructures 
Represented by Space-filling Polyhedral 
Cellular Systems 

Tamás Réti 
Budapest Polytechnic, Doberdó u. 6, H-1031 Budapest, Hungary 

E-mail: reti.tamas@bgk.bmf.hu 

Imre Felde 
Bay Zoltán Institute for Materials Science and Technologies, Fehérvári u. 130., H-
1116 Budapest, Hungary 

E-mail: felde@bzaka.hu 

Gustavo Sanchez Sarmiento 
Universidad de Buenos Aires, Facultad de Ingenieria, Av. Paseo Colon 850, 
(1063) Buenos Aires, Argentina 

E-mail: Sanchezsarmiento@arnet.com.ar 

Rafael Colás 
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo 
León, Pedro de Alba s/n Cd. Universitaria, 66450 San Nicolás de los Garza, N.L. 
MEXICO 

E-mail: rcolas@ccr.dsi.uanl.mx 

 

Abstract: In order to characterize topologically the polycrystalline microstructure of 
single-phase alloys computer simulations are performed on 3-dimensional cellular models.  
These infinite periodic cellular systems are constructed from a finite set of space filling 
convex polyhedra (grains). It is shown that the appropriately selected topological shape 
factors can be successfully used for the quantitative characterization of computer-simulated 
microstructures of various types.  



1. Introduction  
Three-dimensional random or periodic cellular systems are generally used to 
model the geometric structure of many natural and engineered materials [1,2,3,4]. 
This is due to the fact, that topologically, the 3-D polycrystalline microstructure of 
a single-phase alloy is considered as a partition of the space into regular or 
irregular polyhedra [5,6]. Consequently, a 3-D polycrystalline microstructure can 
be simply modelled by a cellular system composed of polyhedral-shaped cells. 

This paper presents a method which enables the topological classification of 3-D 
cellular systems designated to the microstructural modelling of single-phase 
polycrystalline alloys. The novel approach is based on the introduction of the so-
called topological shape factors computed from the scalar topological invariants of 
the cellular systems.  

The applicability of the method has been tested using a finite set of 3-D periodic 
space-filling polyhedral systems. Investigations based on computer simulation 
suggest that the proposed method is an efficient tool for the topological evaluation 
of polycrystalline structures modelled by infinite periodic polyhedral systems. 

2. Global topological characteristics of 3-D periodic 
cellular systems 
Infinite periodic cellular structures are simple and ideal systems to analyse the 
topological properties of polycrystalline materials. As it is known each 3-D 
infinite periodic cellular system composed of convex polyhedra can be represented 
by a torus, and as a result of this topology preserving mapping a so-called finite 
toroidal cellular system can be generated [7,8,9]. It can be verified that for a 3-D 
finite toroidal cellular system (FTC system) constructed from a finite set of unit 
domains the Euler-equation is valid in the following form: 
 0VEFN =+−+−  (1) 

In Eq.(1), N is the number of cells (polyhedra), F is the number of faces,  E is the 
number of edges, and V is the number of vertices, respectively.  The total number 
N of cells is N=∑ fN where Nf is the number of f-sided cells (f=4,5,... fmax). The 

fraction (or frequency) pf of f-faceted cells is pf = Nf/N, where pf>0. Consequently, 

∑ fp =1. For FTC systems, the average number of faces per cell denoted by 〈f〉 

is defined as ∑=〉〈 ffpf , and the second moment of face number per cell can 

be calculated as ∑=〉〈 f
22 pff . Consequently, the variance μ(f) of number of 

faces per cell is given as μ(f) = 〉〈 2f - 2f〉〈 .  A 3-D cellular system is called 



homogenous (face- homogenous) if  μ(f)=0. Since any 2-dimensional face is a 
common face of two different neighbor cells, one obtains N〈f〉=2F. 

 

In FTC systems, for each vertex X, the number of edges incident on X is called the 
valency of X, and denoted by r (or r(X)). If all of the vertices have the same 
valency R, then the FTC system is said to be regular or an R-valent system 
(R=4,5,6,…). Generally, vertices do not all have the same valency, consequently, 
we may define an average valency [r] as follows: 
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In Eq. (2) Vr is the number of r-valent vertices, for which V=ΣVr. From this it 
follows that for every FC system we have [r]V=2E. 

The number of faces incident on a common edge can be different. The number of 
faces incident on edge Y is called the degree of Y, and denoted by d (or d(Y)). For 
FTC systems, the average degree [ε] of edges is defined as   
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In Eq. (3) Ed is the number of edges of degree d, for which ∑ = EEd . It can be 

verified that the average number [n] of edges per face can be calculated as  
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In. Eq.(4) n(f) is the mean number of edges of f-sided polyhedral cells, and Fk is 
the number of k-sided faces, for which ∑ = FFk . From this concept it follows 

that for FTC systems, the following inequalities are fulfilled:  [r]  ≥ 4, 〉〈f  ≥ 4,  3 
≤ [n] ≤ 6 –12/ 〉〈f <6,  3 ≤ [ε] ≤ 6 –12/[r]<6 and 9<[n][ε]<36 .  Moreover, it is 
easy to see that for 3-D periodic polyhedral systems composed only of trivalent 
convex polyhedra (where 3 edges are incident on each vertex), we obtain the 
following result: 
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and 
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It is important to note that topological quantities 〉〈f , [r], [ε] and [n] correspond 
to the „mean incidence numbers”  introduced by Aste and Rivier to characterize 
D-dimensional random cellular froths constituted of (D-1) dimensional polytopes 
(D=2,3,4,...) [5,6]. 

In the following it will be demonstrated that starting with the above formulae it 
easy to generate so-called topological shape factors which can be applicable to the 
global structural characterization of 3D periodic cellular systems. 

 
3. Topological shape factors 
 
In order to characterize quantitatively the topological structure of FTC systems, 
four topological shape factors denoted by  Λ, CI,  Δ and Ψ  have been defined:  
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It can be verified that the following inequalities are valid for the topological shape 
factor Λ: 
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From Eqs.(6 and10) it follows that Λ≥0, if [r] ≥ 〈f〉, moreover Λ≤0,  if [r] ≤ 〈f〉. 
Additionally, Λ=0 if and only if, 〈f〉/[r]=[n]/[ε]=1. 

 

4. Analysis of polyhedral cellular systems 
 

In order to evaluate the discrimination performance of the four shape factors, 
investigations have been performed by using a data base of appropriately selected 
3D periodic cellular systems. The majority of them is taken from the book by 
Williams [10], while the others are artificially constructed periodic systems.  

For the tested polyhedral systems, the basic topological quantities (〈f〉, [n], [r], 
[ε]), and the computed values of topological shape factors are summarized in 
Table 1. 

 

Table 1. Topological characteristics of the tested polyhedral systems 

 

Fig.1 shows some of the traditional (periodic and space-filling) polyhedral 
systems. All of them are applicable to model the microstructure of polycrystalline, 
single-phase materials [3,10]. 

Topological dataDesignation Number of faces
per cell, f <f> [n] [r] [ε] CI Λ Ψ Δ

C-6 6 6 4 6 4 8 0 1.5 2.25
H-8 8 8 4.5 5 3.6 12 -0.2 2 2.5

D-12R 12 12 4 5.3333 3 18 -0.25 3 4
D-12E 12 12 4.667 4.5 3.111 20 -0.333 3 3.375
K-14 14 14 5.143 4 3 26 -0.417 3.5 3.5

MT-4A 4 4 3 14 5.143 4.333 0.714 1 3.5
MT-4B 4 4 3 11.6 4.965 4.417 0.655 1 2.9
MC-6 6 6 4 5.111 3.652 8.571 -0.087 1.5 1.917
M0-8 8 8 3 11 3.273 9.333 0.091 2 5.5
XA-5 5 5 3.6 8 4.5 6 0.25 1.25 2.5
XB-5 5 5 3.2 11 4.364 5.667 0.364 1.25 3.438
XC-5 5 5 3.467 8 4.333 6 0.25 1.25 2.5
X-56 5.6 5.333 3.75 7 4.286 6.667 0.143 1.344 2.333
W12 6, 14, 26 11.6 3.724 6 3 16.4 -0.194 4.224 4.35
W13 6, 14, 26 11.6 4.966 4 3 21.2 -0.396 4.224 2.9
W16 8, 14, 26 14 5.143 4 3 26 -0.417 4.464 3.5
W17 8, 14 11 4.364 5 3.2 17 -0.267 2.955 3.438

W17A 8, 14 11 4.364 5 3.2 17 -0.267 2.955 3.438
W17B 8, 14 11 3.273 8 3 14 -0.083 2.955 5.5
W18 10, 26 14 5.143 4 3 26 -0.417 4.357 3.5
W-P 12, 14 13.5 5.111 4 3 25 -0.413 3.389 3.375



 

 

Figure 1. Examples of space-filling polyhedral systems [10] 

 

The polyhedral system denoted by 14K represents a homogenous and regular (4-
valent) cellular system, which is composed of 14-sided Kelvin polyhedra 
(truncated octahedra). In order to simulate the austenite transformation processes 
occurring in steels, the Kelvin polyhedron is widely used to the geometric 
modelling of the initial austenite grain structure [11].  Of the polyhedral systems 
shown in Fig.1, systems W17 and W18 are composed of two different polyhedra, 
while W12, W13 and W16 are made of three different polyhedra.  In Table 1, the 
polyhedral system W-P is identical to the Weaire-Phelan system generated by 12- 
and 14-sided polyhedra. (Weaire and Phelan have recently given an example of 
froth with 〉〈f =13.5 which minimize the total interfacial area [12].) 

 



 

Figure 2. Artificially genereated 3-D polyhedral systems defined by their unit 
domains 

 

Fig. 2 demonstrates some artificially generated space-filling periodic systems; all 
of them are represented by their unit domains. Of the six polyhedral systems in 
Fig.2, MT-4A is composed of tetrahedra, MC-6 is composed of cubes, XA-5, XB-
5 and XC-5 are composed of 5-sided polyhedra. It is worth noting that the space-
filling system XC-5 is constituted of topologically non-identical cells, (it is 
generated by two, combinatorially different 5-sided polyhedra). Relationships 
between the four topological shape factors are illustrated in Figs. 3-6. 

 

 

 

 

 

 



 

Figure 3. Relationship between topological shape factors Λ and CI 

Figure 4. Relationship between topological shape factors Λ and Ψ 



 

Figure 5. Relationship between topological shape factors Λ and Δ 

Figure 6. Relationship between topological shape factors Ψ and CI 



5. Conclusions 
 

A simple method has been developed to characterize 3-D polycrystalline 
microstructures modelled by space-filling polyhedral systems. From the computed 
results the following conclusions can be drawn:  

 
- All of the four topological shape factors are applicable to the global 

geometric characterization of the simulated microstructures, although 
they are not algebraically independent quantities. Performing linear 
regression analysis and calculating the corresponding correlation 
coefficients RC we have observed that there is a maximal correlation 
between Ψ and CI (RC = 0.929), and a minimal correlation between Λ 
and Δ (RC = - 0.131).   

 
- Of the investigated polyhedral systems, there are three (denoted by 14K, 

W16 and W19) for which the values of computed topological parameters 
are identical,  namely  〈f〉=14,  [n]=36/7=5.143,  [r]=4,  [ε]=3,   CI=26,   
Λ = - 0.417 and Δ=3.5. It should be noted that polyhedral systems 14K, 
W16 and W19 belong to the stable space-filling systems, where four 
polyhedra and four edges are incident on each vertex.  

 
- Based on the concept outlined in  Refs.[5,6,13], it is conjectured that  for 

stable, periodic monotiled froths (whose cells are represented by convex 
polyhedra) the minimal number of faces per cell is  〈f〉=14.  

 
- It is worth noting that in the case of the 3-D Poisson-Voronoi tessellation, 

the following topological quantities can be obtained:R=4, [ε]=6-12/4=3, 
5355.1535/)*48(2f 2 =π+=〉〈 , [n]=6-12/15.5355=5.2276, 

CI=29.071, Δ=Ψ=3.8839 and Λ= - 0.4261 [1]. It seems to be an open 
problem that the number of faces per cell 〈f〉=15.5355 can be considered 
as the theoretical upper bound for any stable, periodic polyhedral system 
whose cells are represented by convex polyhedra. 

 
- It is important to emphasize that there exists a particular class of 3-D, 4-

valent, periodic cellular structures ( 3-D froths),  for which inequalities 
〈f〉 >14,  and [n] >36/7=5.143 are fulfilled. These froths are composed of 
“pseudo-polyhedra” (generalized polyhedra with virtual edges and 
vertices). An example of a stable, periodic, monotiled froth with 〈f〉 =16 
and [n]=21/4 = 5.25 is given in [13]. In this case, the unit cell is a 3-
valent, 16-sided pseudo-polyhedron (with the following numbers of 
faces: eight quadrilaterals, six hexagons and two octagons). 

 



- It is easy to see that the proposed method can be extended to the global 
topological characterization of  4-dimensional polytopes which are 
composed of 3-D polyhedra (polyhedral cells).  It can be assumed  that 
for 4-D polytopes constituted of convex trivalent polyhedra, the upper 
bounds of the corresponding topological parameters are as follows: 
〈f〉=12, [n]=5, and CI=22.  The simplest 4-D polytope for which these 
upper bound conditions are fulfilled is the 120 cell constituted of 120 
regular dodecahedra.  
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