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Abstract:   Synchronous clocking has continued to be the dominant digital design method 
despite the problems of clock distribution in integrated circuit chips of increasing 
complexity and speed.  The continuing increases will soon force a change to asynchronous 
design methods, and the communication between large numbers of high-performance 
processors on a single chip will become a critical issue.  An introduction to a classification 
scheme of mechanisms for interprocess communications via shared memory is described in 
the paper. 
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1.  Introduction 
 
Synchronous methods have dominated digital design for many decades, despite 
the great increases in complexity and speed of modern integrated circuits.  
Realistic predictions indicate a fabrication-capability within the next decade of a 
single-chip with hundreds of processors of ‘Pentium®’ complexity of and clock-
rates an order of magnitude greater than at present.  It is unlikely that a common 
clock could be distributed over such a chip and so centrally-clocked synchronous 
designs will no longer be feasible, and some form of asynchronous approach will 
be essential. 
An application area for which a common clock has never been feasible is 
distributed multiprocessor systems where the parts are in relative motion.  Typical 
of these are military weapons systems, where some processors may be in a static 
ground-based component, some may be in moving vehicles and others in rapidly 
moving missiles, all cooperating within a single operating system.   Design 
techniques for such systems (for example the MASCOT method [1]) might 
contribute concepts useful in future system-on-chip (SOC) designs. 
 
2.  Suggested architectures 
 
In meeting the challenges for SOC design, many architectures have been 
proposed, one of the most developed being ‘Globally-asynchronous, Locally-
Synchronous’ (GALS) structures.  They comprise synchronous ‘islands’ with 
asynchronous communication between the ‘islands’.  The GALS ‘islands’ can use 



pre-designed components (microprocessors, DSP cores, etc) which may be 
purchased as re-usable IP (intellectual property), either with or without designer-
access to the internal structure.   The GALS approach enables full use to be made 
of existing design tools and skills for the individual synchronous processors. 
Another proposal is the ‘Network on a Chip’ approach, for which the processors 
may communicate by the TCP/IP protocol.  The Internet has demonstrated the 
success of heterogeneous, extendable, multiprocessor systems with no common 
clock.  
Biological systems may offer some ideas, since they use massive parallelism, 
complex communications paths (e.g. neural systems), and can achieve spectacular 
performance, including very fast pattern recognition despite being constructed 
from inherently slow (e.g. electrochemistry-based) components.   They clearly 
have no resemblance to a network of classical von Neumann style processors, and 
much research is needed before artificial systems of comparable performance can 
be conceived and implemented. 
 
3. The need for inter-process communication 
 
The semiconductor industry will be able to provide a fabrication capability for at 
least hundreds of high-speed high-performance processors on a single chip, and 
the design of the individual processors is a ‘solved problem’, albeit a complex one 
requiring advanced digital design automation tools and substantial engineering 
skills.  An essential issue for these future products is to design reliable and 
effective methods of inter-process communication (and communication across 
external interfaces, from sensors and to actuators).   The processes will typically 
be running on different processors, but there may also be time-multiplexing of 
processes by multi-tasking.   
 
3.1  The ‘Hardware’ context 
 
Transferring data between unsynchronised processors and capturing external data 
in real-time typically involves clocking the data into some form of latch.  To 
guarantee proper operation, data set up and hold times have to be complied with, 
but since clock and data are from independently-timed domains, it is inevitable 
that occasionally these timing requirements will be violated.  Such violations can 
lead to metastability [2,3], a non-linear dynamical phenomenon which can result 
in occasional excessively-long settling times at gate and flip-flop outputs, during 
which the output level may remain at a mid-value (neither logic 1 or logic 0).   
Arbiters are used to control access by multiple processes to shared resources, and 
have been shown to be inherently subject to metastability, and Analogue-to-
Digital conversion within a fixed conversion time also involves a risk of 
metastability [4,5]. 
However, with good design practice, the probability of error due to metastability 
can be reduced to an acceptably low level. 
 
3.2 The ‘Software’ context 



 
Multiprocessing software (whether by task switching on a single processor or by 
separate executions threads on each of many processors, or some combination of 
these) has been a source of many challenging problems, with a need to avoid 
deadlock, livelock, and ensure fairness in the allocation of resources to processes.  
Real-time operating-systems rely on successful solutions to these problems, but as 
is well known, correctness of design is often not achieved, and ‘system-crashes’, 
requiring a re-initialisation of the whole system, are a familiar occurrence.  While 
this may be acceptable in a word-processor or computer-game, it is not acceptable 
in a safety-critical hard-real-time context (for example, in the control of road 
vehicles, robots and avionics).  In a hard-real-time framework, the possibility that 
one process may have to ‘wait’ for another to be ready (as in the Ada Rendezvous 
[6]) can be a cause of loss of potential performance, and can even lead to failure of 
the complete system when only one process fails (if the other processes are all 
waiting directly or indirectly for this failed process to respond). 
 
3.3 ‘Message passing’ versus ‘Shared Memory’ 
 
There are two distinct approaches to communication between processes.   
One approach is to have a ‘channel’ along which messages are passed, and which 
may involve an acknowledgement being returned to the sender. The OCCAM 
language developed from CSP [7] for the Inmos Transputer represented all 
interprocess communication by channels, which corresponded with the hardware 
‘links’ of the Transputer. 
The other approach is to use a shared memory area which can be accessed by each 
process.  The sender places the data in the memory, and the receiver subsequently 
reads it.  This method has a successful track-record in hard-real-time systems. 
 
4. Classification of Communication between processes 
 
The data items to be communicated are assumed to be multi-bit objects (for 
example an array of several elements or a record of several fields).  Correct 
behaviour requires coherence (the reader must always obtain a coherent item, as 
opposed to one which is partly ‘old’ and partly ‘new’), sequentiality (the reader 
must obtain items in the sequence written) and freshness (the reader must obtain 
the most recently available item) [8, 9]. 
The original MASCOT method divided communications between a ‘writer’and a 
‘reader’ into two classes, achieved by mechanisms called Channels and Pools.  
The Channel is used when the reader must obtain, in sequence, every item written.  
The Pool is used when the reader should obtain the most recent (up to date) item 
written, but does not then need to know the earlier items.  In the Channel, the 
write instruction is non-destructive and the read operation is destructive.  In other 
words, once the reader has read an item from the Channel, it does not need to 
remain in the Channel and may be discarded, whereas the writer must not 
overwrite or remove any items which are already in the Channel waiting to be 
read.   



For the Pool, the opposite holds.  The reader accesses to the Channel should 
provide the same item until the writer has produced a new data item, but as soon 
as this new item is available, the previous data is no longer valid.  It follows that it 
is legitimate (and indeed usual) for many items to be written and never read.    
 
4.1 Algorithmic description of an Asynchronous 
Communications Mechanism [10] 
 
To introduce the idea of an Asynchronous Communications Mechanisms (ACM), 
a two-slot Pool mechanism is first described.  Writer and reader may be assumed 
embedded in endless loops, in which the writer prepares or obtains a new data 
item and writes, and the reader independently reads and uses the new data item.  
Thus, for the sending entity: 

loop 
    obtain new data item 
    writer_process                        /* writes the data item */ 
    carry out other required tasks 
endloop 
 

and for the receiving entity: 
loop 
    reader_process                      /* gets the freshest data item 
*/ 
    use the new data item 
    carry out other required tasks 
endloop 
 

The reader and writer processes might be implemented as follows: 
Writer Process:  

w1:    writepointer := not writepointer; 
w2:    SLOT[writepointer] := input; 
w3:    LASTWRITTEN := writepointer; 

 
Reader Process: 

r1:    readpointer := LASTWRITTEN; 
r2:    output := SLOT[readpointer]; 
 

Uppercase identifier names denote shared variables.  SLOT is a two-item array, 
addressed by a binary variable.  The binary variables writepointer and readpointer 
are local to, respectively, writer and reader processes.  Successive writes go to 
alternate slots, and LASTWRITTEN is used to inform the reader of the location of 
the latest write.  Fig. 1 illustrates the concept.       
Two slots are insufficient for correct operation unless timing-constraints are 
imposed on the writer and reader or some form of mutual exclusion exists between 
writer and reader – otherwise, for various timing relationships between writer and 
reader, it is possible for both to attempt to access the same slot at the same time, 



so this scheme cannot be used in a fully asynchronous environment.   It can be 
shown that there is no possible fully-correct implementation with two locations, 
and none have been reported with three locations but various Pool mechanisms 
with four locations have been invented.  

 writer 
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Figure 1   Concept diagram for two-slot mechanism  
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Figure 2  Concept diagram for Simpson four-slot mechanism 
 

The mechanisms typically comprise slots for holding the data items in memory 
shared by writer and reader, and control variables to ensure that writing and 
reading is directed to the correct slot.  As an example of a Pool ACM which is 
wait-free and operates correctly for any relative timing of writer and reader, a 
version of the four-slot scheme devised by Simpson [11] is next described.  Fig. 2 
illustrates the concept.  This seems to have been the first realistic and correct 
solution proposed, which has been implemented as an ASIC and used in some 
real-time systems [12]. 
The four slots are arranged conceptually in two rows and two columns: 

SLOT[row, column] 
where row, column are each binary (0 or 1). 
For control, a two-element shared binary valued array S[•] and a two-element 
binary valued array v[•] local to the reader are used, together with some other 
variables (x, R, L).  As before, uppercase indentifiers denote the shared variables. 
The basic idea may be described as follows: 



Write to the opposite column to the previous write and avoid the row of 
the most recent read activity. 
Read from the row, column of the most recently completed write 

A compact form of the algorithm is as follows: 
Writer Process:  
w1:    SLOT[x, not S[x]] := input 
w2:    S[x] := not S[x] 
w3:    L, x := x, not R 
 
Reader Process: 
r1:    R := L 
r2:    v[0], v[1] := S[0], S[1] 
r3:    output := SLOT[R, v[R]] 
 

4.2  Waiting properties 
 
There are some inherent properties of a Channel concerning the need for the 
processes to wait.  If the channel is empty, the reader must wait until the writer 
places an item in the Channel.   The writer has to wait if the Channel is full. 
By contrast, there is no essential requirement for either side to wait with a Pool.  
The reader can always read and the writer can always write.  It is, of course, not 
possible for them to simultaneously access the same memory location, and it 
might therefore seem that any implementation would require an arbiter to handle 
this possibility, with the result that waiting would occasionally still be required.   
However, at the expense of some added complexity, mechanisms can be designed 
for which the writer and reader are always able to access a location and the reader 
always obtains the ‘correct’ data item, Figure 2 being a specific example.  
Although shown in the form of mechanical switches, an implementation using 
conventional digital logic can easily be  designed [14].  To generalise, the Signal 
and Constant were added [14], to cover all possibilities (see Table I).  The detailed 
description, their properties, and further generalisations are given elsewhere 
[15,16, 17]. 

 destructive reading non-destructive reading 
destructive writing signal pool 

non-destructive writing channel constant 
Table I 

Conclusions 
 
This paper provides a tutorial introduction to some fundamental concepts which 
can assist in the design and implementation of multiprocessor real-time systems, 
and which may be important for the realisation of the complex designs which will 
inevitable be needed as the complexity of digital integrated circuit chips continues 
to increase dramatically.    
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