
Communications Protocols and Mechanisms for
Distributed Digital Systems

Anthony C Davies
Visiting Professor, School of Computing and Information Systems,
Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE,
England.
tonydavies@ieee.org

Abstract: Synchronous clocking has continued to be the dominant digital design method
despite the problems of clock distribution in integrated circuit chips of increasing
complexity and speed. The continuing increases will soon force a change to asynchronous
design methods, and the communication between large numbers of high-performance
processors on a single chip will become a critical issue. An introduction to a classification
scheme of mechanisms for interprocess communications via shared memory is described in
the paper.

Keywords: Distributed real-time multiprocessors, systems on a chip, asynchronous design,
interprocess communications and mechanisms.

1. Introduction

Synchronous methods have dominated digital design for many decades, despite
the great increases in complexity and speed of modern integrated circuits.
Realistic predictions indicate a fabrication-capability within the next decade of a
single-chip with hundreds of processors of ‘Pentium®’ complexity of and clock-
rates an order of magnitude greater than at present. It is unlikely that a common
clock could be distributed over such a chip and so centrally-clocked synchronous
designs will no longer be feasible, and some form of asynchronous approach will
be essential.
An application area for which a common clock has never been feasible is
distributed multiprocessor systems where the parts are in relative motion. Typical
of these are military weapons systems, where some processors may be in a static
ground-based component, some may be in moving vehicles and others in rapidly
moving missiles, all cooperating within a single operating system. Design
techniques for such systems (for example the MASCOT method [1]) might
contribute concepts useful in future system-on-chip (SOC) designs.

2. Suggested architectures

In meeting the challenges for SOC design, many architectures have been
proposed, one of the most developed being ‘Globally-asynchronous, Locally-
Synchronous’ (GALS) structures. They comprise synchronous ‘islands’ with
asynchronous communication between the ‘islands’. The GALS ‘islands’ can use

pre-designed components (microprocessors, DSP cores, etc) which may be
purchased as re-usable IP (intellectual property), either with or without designer-
access to the internal structure. The GALS approach enables full use to be made
of existing design tools and skills for the individual synchronous processors.
Another proposal is the ‘Network on a Chip’ approach, for which the processors
may communicate by the TCP/IP protocol. The Internet has demonstrated the
success of heterogeneous, extendable, multiprocessor systems with no common
clock.
Biological systems may offer some ideas, since they use massive parallelism,
complex communications paths (e.g. neural systems), and can achieve spectacular
performance, including very fast pattern recognition despite being constructed
from inherently slow (e.g. electrochemistry-based) components. They clearly
have no resemblance to a network of classical von Neumann style processors, and
much research is needed before artificial systems of comparable performance can
be conceived and implemented.

3. The need for inter-process communication

The semiconductor industry will be able to provide a fabrication capability for at
least hundreds of high-speed high-performance processors on a single chip, and
the design of the individual processors is a ‘solved problem’, albeit a complex one
requiring advanced digital design automation tools and substantial engineering
skills. An essential issue for these future products is to design reliable and
effective methods of inter-process communication (and communication across
external interfaces, from sensors and to actuators). The processes will typically
be running on different processors, but there may also be time-multiplexing of
processes by multi-tasking.

3.1 The ‘Hardware’ context

Transferring data between unsynchronised processors and capturing external data
in real-time typically involves clocking the data into some form of latch. To
guarantee proper operation, data set up and hold times have to be complied with,
but since clock and data are from independently-timed domains, it is inevitable
that occasionally these timing requirements will be violated. Such violations can
lead to metastability [2,3], a non-linear dynamical phenomenon which can result
in occasional excessively-long settling times at gate and flip-flop outputs, during
which the output level may remain at a mid-value (neither logic 1 or logic 0).
Arbiters are used to control access by multiple processes to shared resources, and
have been shown to be inherently subject to metastability, and Analogue-to-
Digital conversion within a fixed conversion time also involves a risk of
metastability [4,5].
However, with good design practice, the probability of error due to metastability
can be reduced to an acceptably low level.

3.2 The ‘Software’ context

Multiprocessing software (whether by task switching on a single processor or by
separate executions threads on each of many processors, or some combination of
these) has been a source of many challenging problems, with a need to avoid
deadlock, livelock, and ensure fairness in the allocation of resources to processes.
Real-time operating-systems rely on successful solutions to these problems, but as
is well known, correctness of design is often not achieved, and ‘system-crashes’,
requiring a re-initialisation of the whole system, are a familiar occurrence. While
this may be acceptable in a word-processor or computer-game, it is not acceptable
in a safety-critical hard-real-time context (for example, in the control of road
vehicles, robots and avionics). In a hard-real-time framework, the possibility that
one process may have to ‘wait’ for another to be ready (as in the Ada Rendezvous
[6]) can be a cause of loss of potential performance, and can even lead to failure of
the complete system when only one process fails (if the other processes are all
waiting directly or indirectly for this failed process to respond).

3.3 ‘Message passing’ versus ‘Shared Memory’

There are two distinct approaches to communication between processes.
One approach is to have a ‘channel’ along which messages are passed, and which
may involve an acknowledgement being returned to the sender. The OCCAM
language developed from CSP [7] for the Inmos Transputer represented all
interprocess communication by channels, which corresponded with the hardware
‘links’ of the Transputer.
The other approach is to use a shared memory area which can be accessed by each
process. The sender places the data in the memory, and the receiver subsequently
reads it. This method has a successful track-record in hard-real-time systems.

4. Classification of Communication between processes

The data items to be communicated are assumed to be multi-bit objects (for
example an array of several elements or a record of several fields). Correct
behaviour requires coherence (the reader must always obtain a coherent item, as
opposed to one which is partly ‘old’ and partly ‘new’), sequentiality (the reader
must obtain items in the sequence written) and freshness (the reader must obtain
the most recently available item) [8, 9].
The original MASCOT method divided communications between a ‘writer’and a
‘reader’ into two classes, achieved by mechanisms called Channels and Pools.
The Channel is used when the reader must obtain, in sequence, every item written.
The Pool is used when the reader should obtain the most recent (up to date) item
written, but does not then need to know the earlier items. In the Channel, the
write instruction is non-destructive and the read operation is destructive. In other
words, once the reader has read an item from the Channel, it does not need to
remain in the Channel and may be discarded, whereas the writer must not
overwrite or remove any items which are already in the Channel waiting to be
read.

For the Pool, the opposite holds. The reader accesses to the Channel should
provide the same item until the writer has produced a new data item, but as soon
as this new item is available, the previous data is no longer valid. It follows that it
is legitimate (and indeed usual) for many items to be written and never read.

4.1 Algorithmic description of an Asynchronous
Communications Mechanism [10]

To introduce the idea of an Asynchronous Communications Mechanisms (ACM),
a two-slot Pool mechanism is first described. Writer and reader may be assumed
embedded in endless loops, in which the writer prepares or obtains a new data
item and writes, and the reader independently reads and uses the new data item.
Thus, for the sending entity:

loop
 obtain new data item
 writer_process /* writes the data item */
 carry out other required tasks
endloop

and for the receiving entity:
loop
 reader_process /* gets the freshest data item
*/
 use the new data item
 carry out other required tasks
endloop

The reader and writer processes might be implemented as follows:
Writer Process:

w1: writepointer := not writepointer;
w2: SLOT[writepointer] := input;
w3: LASTWRITTEN := writepointer;

Reader Process:

r1: readpointer := LASTWRITTEN;
r2: output := SLOT[readpointer];

Uppercase identifier names denote shared variables. SLOT is a two-item array,
addressed by a binary variable. The binary variables writepointer and readpointer
are local to, respectively, writer and reader processes. Successive writes go to
alternate slots, and LASTWRITTEN is used to inform the reader of the location of
the latest write. Fig. 1 illustrates the concept.
Two slots are insufficient for correct operation unless timing-constraints are
imposed on the writer and reader or some form of mutual exclusion exists between
writer and reader – otherwise, for various timing relationships between writer and
reader, it is possible for both to attempt to access the same slot at the same time,

so this scheme cannot be used in a fully asynchronous environment. It can be
shown that there is no possible fully-correct implementation with two locations,
and none have been reported with three locations but various Pool mechanisms
with four locations have been invented.

 writer

reader

LASTWRITTEN

SLOT[0]

SLOT[1]

writepointer readpointer

Figure 1 Concept diagram for two-slot mechanism

input (from
writer

output (to
reader)

SLOT[0,0] SLOT[0,1]

SLOT[1,0] SLOT[1,1]

x

S[x]

S[x]

v[R]

v[R]

R

Figure 2 Concept diagram for Simpson four-slot mechanism

The mechanisms typically comprise slots for holding the data items in memory
shared by writer and reader, and control variables to ensure that writing and
reading is directed to the correct slot. As an example of a Pool ACM which is
wait-free and operates correctly for any relative timing of writer and reader, a
version of the four-slot scheme devised by Simpson [11] is next described. Fig. 2
illustrates the concept. This seems to have been the first realistic and correct
solution proposed, which has been implemented as an ASIC and used in some
real-time systems [12].
The four slots are arranged conceptually in two rows and two columns:

SLOT[row, column]
where row, column are each binary (0 or 1).
For control, a two-element shared binary valued array S[•] and a two-element
binary valued array v[•] local to the reader are used, together with some other
variables (x, R, L). As before, uppercase indentifiers denote the shared variables.
The basic idea may be described as follows:

Write to the opposite column to the previous write and avoid the row of
the most recent read activity.
Read from the row, column of the most recently completed write

A compact form of the algorithm is as follows:
Writer Process:
w1: SLOT[x, not S[x]] := input
w2: S[x] := not S[x]
w3: L, x := x, not R

Reader Process:
r1: R := L
r2: v[0], v[1] := S[0], S[1]
r3: output := SLOT[R, v[R]]

4.2 Waiting properties

There are some inherent properties of a Channel concerning the need for the
processes to wait. If the channel is empty, the reader must wait until the writer
places an item in the Channel. The writer has to wait if the Channel is full.
By contrast, there is no essential requirement for either side to wait with a Pool.
The reader can always read and the writer can always write. It is, of course, not
possible for them to simultaneously access the same memory location, and it
might therefore seem that any implementation would require an arbiter to handle
this possibility, with the result that waiting would occasionally still be required.
However, at the expense of some added complexity, mechanisms can be designed
for which the writer and reader are always able to access a location and the reader
always obtains the ‘correct’ data item, Figure 2 being a specific example.
Although shown in the form of mechanical switches, an implementation using
conventional digital logic can easily be designed [14]. To generalise, the Signal
and Constant were added [14], to cover all possibilities (see Table I). The detailed
description, their properties, and further generalisations are given elsewhere
[15,16, 17].

 destructive reading non-destructive reading
destructive writing signal pool

non-destructive writing channel constant
Table I

Conclusions

This paper provides a tutorial introduction to some fundamental concepts which
can assist in the design and implementation of multiprocessor real-time systems,
and which may be important for the realisation of the complex designs which will
inevitable be needed as the complexity of digital integrated circuit chips continues
to increase dramatically.

Acknowledgements

Research at University of Newcastle-upon-Tyne and initially at King’s College
London and then Kingston University has been investigating the design and
implementation of communications mechanisms for asynchronous and
heterogeneous distributed digital systems, and also the development of design
tools for such systems.
The U.K. EPSRC is thanked for financial support (Grant Nos. GR/L92471† and
GR/R32895††). I also thank colleagues at the University of Newcastle-upon-
Tyne (Ian Clark, Alex Yakovlev and David Kinniment) and at MBDA UK Ltd.
Stevenage (Matra BAe Dynamics, formerly British Aerospace Dynamics) (Hugo
Simpson and Eric Campbell) for many useful discussions.
 †see http://async.org.uk/comfort ††see
http://async.org.uk/coherent

References

[1] Simpson, H.R. ’The Mascot Method’ IEE Software Engineering Journal,

1986,.1, 103-120
[2] Seitz, C.L. ‘System Timing’ in Mead C. and Conway, L. Introduction to VLSI

Systems, Addison Wesley, 1980, 218-262
[3] Davies A.C. ‘Metastability in Latches, Arbiters and Data Converters’, Proc.

Int. Symp. on Signals, Circuits and Systems (SCS’99), 6-7 July 1999, Iaşi,
Romania, 1-4

[4] Chaney T.J., Molnar C.E. ‘Anomalous Behaviour of Synchroniser and
Arbiter Circuits’, IEEE Trans, 1973, C-22, 421-422

[5] Kinniment D.J., Yakovlev A. and Gao B. ‘Metastable behaviour and system
performance’ Proc. 2nd UK Forum on Asynchronous Systems, Department of
Computing Science, University of Newcastle upon Tyne, July 1997

[6] Gehani, N.H., Roome, W.D. ‘Rendezvous facilities: Concurrent C and the
Ada language’, IEEE Trans. on Software Engineering 1988 14, (11) 1546-
1553

[7] Hoare. C.A.R. 'Communicating sequential processes'. Comms. of the ACM,
1978, 21, (8). 666-677

[8] Clark I.G., Davies A.C. ‘A Comparison of some wait-free Communications
Mechanisms’, Proc. Wksp. on Asynchronous Interfaces: Tools, Techniques
and Implementations (AINT’2000), 19th-20th July 2000, Delft, Netherlands,
23-29.

[9] Simpson, H.R. ‘Freshness specification for a class of asynchronous
communication mechanisms’ IEE Proc: Computers and Digital Techniques,
2004, 151 (2) 110-118

[10] Davies, A.C. ‘Reasons, Protocols and Mechanisms for Communicating
Asynchronously between Digital processes’, Proc. Int. Symp. on Signals,
Circuits and Systems (SCS 2001), 10-11 July 2001, Iaşi, Romania, 1-10

[11] Simpson H.R. ‘Four-slot fully asynchronous communication mechanism’,
IEE Proc, Part E, Computers and Digital Techniques, 1990, 37, 17-30

http://async.org.uk/comfort
http://async.org.uk/coherent
http://ieeexplore.ieee.org/search/quicksrchresult.jsp?queryText=(gehani%20%20n.%20h.%3cin%3eau)&valnm=Gehani%2C+N.H.&ResultCount=15&SortField=Score&SortOrder=desc&reqloc=au
http://ieeexplore.ieee.org/search/quicksrchresult.jsp?queryText=(%20roome%20%20w.%20d.%3cin%3eau)&valnm=Roome%2C+W.D.&ResultCount=15&SortField=Score&SortOrder=desc&reqloc=au
http://ieeexplore.ieee.org/search/quicksrchresult.jsp?queryText=(%20simpson%20%20%20h.%20%20r.%3cin%3eau)&valnm=Simpson%2C++H.+R.&ResultCount=15&SortField=Score&SortOrder=desc&reqloc=au

[12] Campbell E. ‘DIA temporal characteristics and their experimental
verification’, British Aerospace Defence Dynamics Ltd., Univ. of York,
Admiral Management Services, 1992

[13] Davies A.C., Clark I.G. ‘Asynchronous Communication without waiting:
from the concept to the hardware’, Proc. Int. Conf. on Applied Electronics,
Plzen, 5-6 Sept 2001, 55-59

[14] Simpson H.R. ‘Protocols for process interaction’, IEE Proc: Computers and
Digital Techniques, 2003, 157-182

[15] Simpson H.R. ‘Correctness analysis for class of asynchronous
communication mechanisms’, IEE Proc, Part E, Computers and Digital
Techniques, 1992, 139, 35-49

[16] Simpson H.R. ‘New algorithms for asynchronous communication’, IEE
Proc, Part E, Computers and Digital Techniques, 1997, 144, 227-231

[17] Simpson, H.R. 'Multireader and multiwriter asynchronous communication
mechanisms', IEE Proc. Computers and Digital Teqchniques. 1997, 144, (4),
241-243

