
1

Petri nets modeling and distributed 
embedded controller design

Luis Gomes
Univ. Nova de Lisboa – Fac. Sciences & Technology &

UNINOVA - CTS, Portugal
lugo@ieee.org

September 2, 2014
Óbuda University

Budapest, Hungary



2

Lisbon

PORTUGAL

EUROPE

Univ. NOVA Lisboa - UNL

Faculty Sciences & Technology - FCT

Dep. Eng. Electr. (DEE)

UNINOVA

Centre of Technology 
and Systems (CTS)

Lisbon
airport

Costa da Caparica

Lisbon
downtown

Monte da 
Caparica

Almada

Setubal
Campus and 

residence

20kms away 
from Lisbon 

airport



3

Rectory 
UNL

Universidade Nova de Lisboa
• The Universidade Nova de Lisboa or 

NOVA is a Portuguese public university 
established in 1973, in Lisbon. In 
Portuguese, the name of the University 
means "New University of Lisbon" and it 
reflects the fact of being the youngest of 
the public universities of Lisbon. 

• The University is commonly referred to, 
and is now officially branded, as NOVA 
(Portuguese for "new").



4

Universidade Nova de Lisboa
• Schools:

– Faculty of Science and Technology
– Faculty of Social and Human Sciences
– Nova School of Business and Economics
– Faculty of Medical Sciences
– Faculty of Law
– Statistics and information management
– Chemical and biological technology
– Hygiene and tropical medicine
– Public health

Univ. Nova Lisboa in rankings

• QS World University Rankings 2013

– Portuguese Universities

• 343= University of Porto
• 353= Universidade Nova de Lisboa

– Top 50 under 50 @ 2013 (46)

• 358= University of Coimbra
• 551-600 Univ. Catolica Portuguesa, Lisboa
• 551-600 University of Lisbon



5

Univ. Nova Lisboa in rankings
• QS World University Rankings by Faculty 

2013 - Engineering and Technology
– Portuguese Universities

• 152= University of Porto
• 272= Universidade Nova de Lisboa
• 295= University of Coimbra
• 309= Universidade Técnica de Lisboa

FCT/UNL is organized in:
- 14 Scientific Departments, with a total of 457 Professors, 90% of

which hold PhD degrees, and over 150 researchers;
- Currently with 7860 students, of which 74% are Masters and PhD

students;
- 81 degree programmes, predominantly in the area of Engineering.
- 18 research centres acknowledged by the Science and Technology

Foundation (Portuguese Ministry of Education and Science);
- Over 1000 international publications and about 600 Master and 50

PhD thesis.
- Over 200 bilateral agreements with other prestigious foreign

institutions, for academic staff and students exchange;
- The entrepreneurial drive of the students and graduates of FCT has
led to many successful spin-offs that transfer knowledge to the market
in the prospect of creating value and social impact.

The fundamental aim of the Faculty of Sciences and Technology is to 
become a Research Oriented Faculty with strategic guidelines based 

on a teaching and research excellence with a growing stand in the 
national and international panorama.

about FCT

administration
education
research

facts & numbers
assoc. entities

facts & numbers



6

environmental sciences and engineering
materials science 

earth sciences 
applied social sciences 

civil engineering 
electrical engineering 

mechanical and industrial engineering 
physics

informatics
mathematics

chemistry
life sciences 

science and technology of biomass
conservation and restoration

about FCT

administration
education
research

facts & numbers
assoc. entities

departments

about FCT

administration
education
research

facts & numbers
assoc. entities

research centres
CEFITEC | Centre of Physics and Technological Research

CENIMAT/I3N | Centre for Materials Research (integrates the Ass ociated 
Laboratory I3N – Institute for Nanostructures, Nanof abrication and 

Nanomodelling)
CENSE | Centre for Environmental and Sustainability Resea rch

CENTRIA | Centre for Artificial Intelligence 
CICEGe | Research Centre on Science and Engineering Geolog y

CITI | Research Centre for Computing and Information Tec hnology
CIUHCT | Interuniversity Centre for the History of Science  and Technology

CMA | Centre of Mathmatics and Applications
CQFB/REQUIMTE | Centre for Fine Chemistry and Biotechnology (inte grates 

the Associate Laboratory for Green Chemistry – REQUI MTE – Network for 
Chemistry and Technology)

CREM | Centre for Microbial Resources
CTS | Centre of Technology and Systems 

IET | Research Centre on Enterprise and Innovation
UBiA | Environmental Biotechnology Unit

UIED | Research Unit on Education and Development
UNIC | Research Centre on Structures and Construction 

UNIDEMI | R&D Unit on Mechanical and Industrial Engineering
VICARTE | Research Unit “Glass and Ceramic for the Arts”

CFA-FCT | Centre for Atomic Physics – FCT Pole



7

Petri nets modeling and distributed 
embedded controller design

Luis Gomes
Univ. Nova de Lisboa – Fac. Sciences & Technology &

UNINOVA - CTS, Portugal
lugo@ieee.org

September 2, 2014
Óbuda University

Budapest, Hungary

Acknowledgments to  contributions from
João Paulo Barros, Anikó Costa, Filipe Moutinho, and Fernando Pereira,
members of the 
Group on Reconfigurable and Embedded System - GRES
from Univ. Nova de Lisboa / UNINOVA – CTS (Centre of Technology and Systems), 
Portugal. 
http://gres.uninova.pt/



8

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers 

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up

• Exercise 1:
• Think about the car that we were able to drive 

twenty years ago.
• Compare with the car that we are able to drive 

today.



9

• Exercise 1:
• Think about the car that we were able to drive 

twenty years ago.
• Compare with the car that we are able to drive 

today.

• Exercise 2:
• Think about the phone that we were able to use 

twenty years ago.
• Compare with the phone that we are able to use 

today (from land lines phones to cell phones).

These examples are from our daily life.

What about distributed 
embedded controller design?



10

How to handle design complexity?

• For how long Moore’s law will stand?
… forever?

– Gordon Moore, "Cramming more components onto integrated 
circuits", Electronics Magazine 19 April 1965:

• Sustained increase in the transistors/chip 
doubling every ~1 ½ years since 1959

Design complexity 
versus designer productivity

• Top-down versus bottom-up approaches
– To handle complexity, it is normally assumed that 

analysis needs to be hierarchical and top-down.
– However, reuse of modules is fundamental.

• Pragmatic approach (mostly followed):
– Primarily follow top-down approach (system-level) 
– Complemented with bottom-up attitude (to 

support reusability)



11

The productivity gap

Design Complexity

Designer Productivity

Reducing the 
productivity gap:

One major challenge 
in current design of 
embedded systems

The verification gap

Designer Productivity

Verification Capability

Another major 
concern in current 

design of embedded 
systems



12

Needs to improve the design…

• If one looks into ways for:
– improving performance, 
– reducing power consumption, 
– reducing costs, 
– reducing time-to-market,
– reducing…
– Improving…

• Exploiting concurrency and distributed computing
and control is one major option to support
improvement on several aspects.

Open issues and challenges

• How to reduce the productivity gap?
• How to reduce the verification gap?
• How to support reliable distributed execution?
• Contribution to the answers:

– Relying more and more on Model-based
Development

– Increasing usage of design automation tools
(including specification, simulation/validation, 
verification, code generation, and test)



13

Moving to model-based 
development

• Models are used not only for describing specifications of 
the system at earlier phases of development, but also 
intended to be used along the whole development 
process, including automatic code generation (verification 
and implementation).

• Start with platform independent specification, “easily” 
supporting porting/implementation into specific platforms.

• For that end, an operational model having a precise 
execution semantics needs to be selected, allowing usage 
of the model at the different stages of the development 
process.

Model-based 
development :

from partial 
models to 

deployment into 
implementation 

platforms



14

Selection of model formalism

• Several modeling formalisms already proved 
their adequacy fully supporting this model-based 
development flow strategy 

• Considering controller design, it is common to 
give preference to state-based modeling 
formalisms due to its expressiveness 
capabilities. 

• Also selecting an operational formalism will 
support the whole development cycle, including 
automatic code generation.

Selection of model formalism
• Among those eligible most common 

formalisms, it is worth to mention state 
diagrams, hierarchical and concurrent state 
diagrams, statecharts, and Petri nets.

• The selected formalism for this presentation 
is Petri nets. Why?
– Rigorous computational model
– Precise execution semantics
– Graphical representation
– Formal representation



15

Petri nets
- Can be seen as a generalization of state diagrams

- Bipartite graph 

- Places (associated with the static part of the mode l)

- Transitions (… dynamic part of the model)

- Arcs (from places to transit. or from trans. to pla ces)

- Locality on evaluation of model evolution.

- Concurrency on model evolution.

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers 

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up



16

Petri nets for controller modeling

• Starting with autonomous classes of Petri nets…
• Extremely important to have the possibility to add 

dependencies to the environment under control, namely 
input and output signals and events. 

• In those cases, Petri nets classes become non-
autonomous.

• Several classes of non-autonomous Petri nets have been 
referred in the literature (some having strong links with 
automation systems) ((Silva 1985) (David & Alla 1992) 
(Venkatesh, Zhou & Caudill 1994) (Hanisch & Lüder 
2000) (Frey 2000) (Frey & Wagner 2006)).

The Input-Output Place-Transition 
Petri net class (IOPT nets)

• Extended from the Place/Transition net class

• Non-autonomous dependencies:
� Input and output signals Input and output events
� Transition firing conditioned by input events and guard functions constrained 

by input signals
� Transition firing can generate output events and/or update output signals
� Output signals can also be associated with places
� Introduction of time domains and communication channels

• Supporting Deterministic execution: 
• Maximal step execution semantics
� Considers single server semantics
� Includes Transition priorities and Test arcs



17

Application example 
(from automation area)

• Controller for a 
transportation 
system composed 
by three cars

• Cars move 
asynchronously but 
start synchronizely 
at both ends.

From: M. Silva, Las Redes de Petri: en la Automática y 
la Informática. Madrid: Editorial AC, 1985

Application example

• Goal 1: to obtain a controller 
for one car

• Goal 2: to obtain a controller 
for the whole system 
composed by three cars

• Goal 3: to obtain a distributed 
controller composed by 3 
controllers, one per car



18

Goal 1: to obtain a controller for 
one car

A1 B1

GO BACK
�M1
�DIR1

One car
controller

GO

BACK

A1

B1
M1

DIR1

Goal 2: to obtain a controller for the 
whole system composed by three cars

Three cars
controller

M2

DIR1
A3

B3

GO
BACK

A2

B2

M1

M3

DIR3

DIR2

A1

B1

Approach: Replication of individual models (supporting reusability)
Problem: synchronizaton at both ends is not satisfied
Solution: we need to adequately compose the models

car1 car2 car3



19

Composability of net models
• Several solutions have been proposed
• Fusion of places (asynchronous composition)
• Fusion of transitions (synchronous composition)
• Fusion of places and transitions
• Major three steps

– Identification of the models to compose
– Definition of the interfaces of the models and nodes to 

be merged
– Merging models

The net addition operation

carcent = car1 + car2 + car3
(car1.go/car2.go/car3.go � go,
car1.back/car2.back/car3.back � back)

car1 car2 car3 carcent



20

What about property verification?

• Having non-
autonomous Petri 
nets, we need to 
face state-space 
based verification 
techniques.

State space verification

• Plenty of tools available for verification of 
autonomous low-level nets.

• The number of tools shrinks if maximal 
step is considered as execution 
semantics.

• And shrinks again if non-autonomous 
dependencies are considered.

• Anyway, for automation systems, several 
tools are available.



21

Properties for our controller model
16 states detected; no conflict; no deadlocks
All places having as minimum marking 0 tokens 
and as maximum marking 1 token

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers 

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up



22

Application example

• Goal 1: to obtain a controller 
for one car

• Goal 2: to obtain a controller 
for the whole system 
composed by three cars

• Goal 3: to obtain a distributed 
controller composed by 3 
controllers, one per car

Goal 3: to obtain a distributed controller 
composed by 3 controllers, one per car

M2

DIR1
GO

BACK

A2

B2

M1

M3

DIR3

DIR2A1

B1

Three cars distributed 
controller

Car 1
controller

Car 2
controller

Car 3
controller

A3

B3

Approach : 
Decompose the model 
into concurrent models 

Problem : 
we need to introduce 
communication
between 
sub-models
Constraint : we want 
to assure property 
preservation (or at 
least predicability)



23

Distributed 
Embedded 
Controllers 

Development 
Flow

Construction of partial sub-models

System model

Concurrent components

Distributed components

Platform components

Prototype

System model

Composition
(through 
addition)

Distribution

Mapping

Construction of 
partial sub-models

Decomposition
(through 
splitting)

Concurrent 
components

Distributed
components

Platform
components

Automatic 
code

generation

Prototype

System model

Composition
(through 
addition)

Distribution

Mapping

Construction of 
partial sub-models

Decomposition
(through 
splitting)

Concurrent 
components

Distributed
components

Platform
components Automatic 

code
generation

Prototype

Distributed 
Embedded 
Controllers 

Development 
Flow

Synchronous 
execution

Globally 
Asynchronous 

Locally 
Synchronous 

execution

Platform 
Independent 

Model 
(PIM)

Platform 
Specific 
Model 
(PSM)



24

The net splitting operation
• Decomposition into a set of concurrent models, 

which (whenever executed according with 
synchronous paradigm) will preserve properties.

• Usage of directed synchronous channels to 
communicate among components synchronizing 
transition synchrony sets.
– One master transition (responsible for the firing of the 

synchrony set);
– One or more slave transitions 

• Concurrent models are amenable to support 
distributed execution of the Petri net model (in a 
later stage)

The net splitting operation
• Identifying the nodes (the cutting set) where the 

model should be broken. 
• The nodes defined as cutting set have to be 

validated.
• Once defined a valid cutting set, the result sub-

models can be obtained applying three rules, 
depending on the cutting node:
– Rule#1, cutting node is a place
– Rule #2, cutting node is a transition with incoming 

arcs only from one component
– Rule #3, cutting node is a transition with incoming 

arcs from more than one component



25

Splitting our model

Cutting set

Concurrent sub-models



26

Concurrent sub-models 
(synchronous execution)

Concurrent sub-models 
implementation view



27

Facing distributed 
implementations - I

• When global execution of the model is not viable 
anymore, and the system needs to be seen as a 
collection of parallel components.

• We need to move away from the synchronous 
paradigm (where one global tick / execution step 
is considered) and need to face globally 
asynchronous locally synchronous (GALS) 
execution semantics.

• Maximal step execution semantics needs to be 
kept in each component.

Facing distributed 
implementations - II

• Approach:
– Definition of time domains (each time domain has its 

own tick / execution step) 
– Each component will be associated with one different 

time domain
– Communication channels have a place semantics 

(holding non-instantaneous pending communication)
– Each directed synchronous channel will be replaced 

by a directed asynchronous channel, where master 
transition, slave transitions, and the channel itself are 
associated with different time domains.



28

Concurrent sub-models

Distributed sub-models



29

Coming back to property verification
• Property verification still possible based on state 

space construction.
• Behavioral model for the asynchronous 

channels needs to be used, complemented by 
interleaving execution between all time domains 
(each of them having a maximal execution step), 
assuring GALS evolution

Configuring communication layers

• Using the presented Petri net-based distributed 
embedded controllers development flow is 
possible to check a-priori impact of using 
different types of communication support 
between components.

• The maximum number of messages that each 
Asynchronous-Channel may need to buffer can 
be determined through analysis of associated 
state space (determining maximum bound of 
associated places).



30

New tools are coming

• Petri nets already have a set of supporting 
tools mostly covering specification and 
verification.

• However, Petri nets need additional tools, 
mostly covering automatic code 
generation, to be fully integrated in 
engineering development flows.

• A contribution (for IOPT nets) is available 
at http://gres.uninova.pt/

IOPT-Tools cloud-based 
framework

Tools offered under a cloud-based user interface

� Web User Interface  (http://gres.uninova.pt)
� AJAX Based IOPT Petri Net Editor
� Simulation / Debugger
� State Space Generation Tool
� Model-checking using a Query System
� Automatic controller C code generator
� Automatic controller VHDL hardware synthesis



31

Development flow:

FPGAs

CPLDs

ASICs

. . .

. . .. . .

Synthesizer

(FPGA vendor tools)

...

code

VHDL 
code

Petri net

model

Automatic 
code 

generation

Editor

Simulation 
and state-

space 
verification

tools

Supporting

simulation,

verification and

implementation

Intuitive,

platform- and

network-

independent

Arduino

Atmel

PIC

ARM

. . .

CompilerC code

Design effort Automatic code generation

Model-based design of embedded controllers 
using IOPT Petri-nets

Implementation
platforms

IOPT-Tools



32

IOPT-Tools – Overview

IOPT-Tools – Model Editor



33

IOPT-Tools – Simulator/Debugger



34

IOPT-Tools – Spate-space generator

IOPT-Tools – Spate-space generator



35

Model Checking

Very complex state-space graphs (millions of states ) 
cannot be visually inspected:

� Query Editor
Graphical user interface to define queries and automatically 
check properties on the resulting state-space graph

� Query results filters
Inspect and filter query results 

� Compilation strategy
Queries are compiled into C code and inserted into the 
state-space generator program

IOPT-Tools – Query Editor



36

IOPT-Tools – Query results

Outline
• Motivation

– How to handle design complexity
– Some issues and challenges

• Petri-nets for controller modeling
• Distributed Embedded Controllers 

Development Flow
– Operations on nets
– Distributed execution
– Tools

• Sum-up



37

50 Years after Prof. Petri’s 
seminal work (1962)

• Professor Carl Adam Petri passed away on July 2, 2010, 
with the age of 83 years old; he was born on 12 July 
1926 in Leipzig.

• As stated in his message to the Academy of 
Transdisciplinary Learning and Advanced Studies, in the 
occasion of accepting the "Academy Gold Medal of 
Honor” recognizing his lifetime achievements, in 2007, 
Professor Carl Adam Petri referred that “Yet, I do not 
consider my work as finished”. 

• Luckily for us, so many of us are very grateful to him for 
laying the foundation for such flourishing research area 
and are willing to continue developing and applying Petri 
nets in so many fields of science and engineering.

50 Years after Prof. Petri’s 
seminal work (1962)

• Several parallel paths were traveled in 
different domains…

• … nowadays Petri nets can be placed in 
the center of development processes fully 
supporting the development of complex 
systems though design automation tools.



38

Petri nets at the
center of the
distributed
embedded
controller
development:
Composition, 
decomposition, 
and composition
again

Underlying approach



39

Further information

• Feel free to contact me:
– Luis Gomes, 

• lugo@fct.unl.pt
• http://www.uninova.pt/~lugo

• to use IOPT-Tools
– http://gres.uninova.pt

• and to let us know your comments

Petri nets modeling and distributed 
embedded controller design

Luis Gomes
Univ. Nova de Lisboa – Fac. Sciences & Technology &

UNINOVA - CTS, Portugal
lugo@ieee.org

September 2, 2014
Óbuda University

Budapest, Hungary


