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Quantum dots

Nanoscale objects containing small and controlled
number of electrons (also called „artificial atoms”)

• often made of semiconductors
(various methods)

•  from few to 100 atoms
(different shapes)

• N  a few tens of electrons

• coupling to environment
(electric, magnetic,optical, mechanic)
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Quantum dots

spatial confinement
& electron wave character

→ quantization
(discrete energy levels)
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shape/symmetry

→ shell degeneracy
→ Hund rules (e.g. max L)

size, magnetic field,
light (electrons & holes)
→

strong & nontrivial
correlation effects



Hall effect
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Quantum Hall effect

2D
low T
high B
low/approp. n
weak disorder

filling factor: 𝜈 = Τ𝑁 𝑁𝜙 = Τ𝑛 𝑛𝜙

𝜎𝑥𝑦 = Τ𝜐𝑒2 ℎ ; 𝜎𝑥𝑥 = 0

Quantization:
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cyclotron energy: ℏ𝜔𝑐 = Τℏ𝑒𝐵 𝑚𝑐

Ohm/Hall
law
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Quantum Hall effect
Klaus von Klitzing ’80

Klaus von Klitzing
High Magnetic Field Laboratory, Grenoble (France)
5 February 1980, 2am

– topological phase of matter
other/related topological states : 

- topological insulators (HgTe, Bi2Se3)
- topological superconductors (Sr2RuO4)
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Topology
branch of mathematics concerned with properties of

figures unchanged under continuous deformation

7 bridges of Königsberg 
(Leonhard Euler, 1735)

Knots (Peter Guthrie Tait, 1885)

Euler's polyhedron formula
v, e, f = numbers of vertices,

edges, and faces
Can one cross each bridge exacty once
and return to origin?



Quantum Hall effect as topological effect

Quantization of quantum Hall 
effect is topological

Phase transition not described by 
spontaneous symmetry breaking

In contrast, at low temperature
(ground state) symmetry is higher

Order parameter: non-local, Chern
number (topological invariant) 
geometry/curvature of Hilbert space



Quantization of quantum Hall 
effect is topological

Phase transition not described by 
spontaneous symmetry breaking

In contrast, at low temperature
(ground state) symmetry is higher

Order parameter: non-local, Chern
number (topological invariant) 
geometry/curvature of Hilbert space

Wave vector 𝒌 in closed loop →

Berry phase of Bloch w-fun 𝑢𝑚 𝒌 :

∮ 𝐴𝑚 𝑑𝑠𝑘; 𝐴𝑚 ≡ 𝑖 𝑢𝑚 𝛻𝑘 𝑢𝑚

Berry curvature: ℱ𝑚 = 𝛻𝑘 × 𝐴𝑚

Stokes theorem:

∮ 𝐴𝑚 𝑑𝑠𝑘= ∬ℱ𝑚 𝑑
2𝑘

Chern number (~total curvature):

𝑛𝑚 = 2𝜋 −1∬
𝑜𝑐𝑐

ℱ𝑚 𝑑2𝑘

TKNN (Thouless, Kohmoto, 

Nightingale, den Nijs) 1982:

𝜎𝑥𝑦 = Τ𝒏𝑒2 ℎ (over occup. LLs)

Gauss & Bonnet (1848):

∬𝐾𝑑𝐴 + ∫ 𝑘𝑔𝑑𝑠 = 2𝜋 𝜒𝑀

For a closed surface:

2𝜋 −1 ∯𝐾 𝑑𝐴 = 2 1− 𝑔

For torus (2D Brillouin zone):

𝑔 = 1 ⇒ 𝑛 = 0

Quantum Hall effect as topological effect



Quantization of quantum Hall 
effect is topological

Phase transition not described by 
spontaneous symmetry breaking

In contrast, at low temperature
(ground state) symmetry is higher

Order parameter: non-local, Chern
number (topological invariant) 
geometry/curvature of Hilbert space

properties depend on 
topological invariant 
(Hall conductance xy

~ Chern number)

Effect (exact quantization)
is independent of:

• material

• type of structure

• sample geometry

• disorder

• magnetic field

• temperature

• …
A

VH
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Quantum Hall effect as topological effect



Fractional quantum Hall effect
Störmer, Tsui, Gossard ’82

Integral QHE: quantization of RH near exact filling of Landau levels

Fractional QHE: similar behaviour near certain fractional fillings
new physics: quantum liquid, fractional excitations, anyon statistics
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Quantum liquid

electrons in two dimensions (very thin layer)

in high magnetic field (motion further restricted/quantized to LLs)

interacting with one another via Coulomb forces

at approprate (low) density

become strongly correlated and condense into a liquid

B

new phase of matter: quantum1 liquid2

1 made of quantum particles (electrons)
2 isotropic and incompressible



Fractionally charged (quasi)particles

additional electron entering the liquid
splits into 3 fractionally charged quasiparticles

(the extra electron blends into the liquid, and the excessive local
charge shows as 3 new quasiparticles, moving independently)



Fractional and non-Abelian (quasi)particles

in 3D:

double

exchange

(P2):
Loop

Identity

𝑃 = −1: fermions→ Pauli exclusion principle

𝑃 = +1 : bosons → Bose-Einstein condensation

single 

exchange:

in 2D:

above argument fails, 𝑃 = 𝑒𝑖𝜃 (anyons) or matrix (non-abelions)

→ topological quantum computation



Particles with „memory of trajectory”

braid/exchange „counter-clockwise” braid/exchange „clockwise”



tim
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braiding non-Abelions (particles with non-Abelian braid group)

final quantum state depends on past trajectories (not only on final
positions) → application as protected element of quantum memory



Composite fermions
Jain ’89

2D electrons + magnetic field → degenerate energy levels (Landau)

interactions→ correlations (complicated behavior) 
→ incompressible quantum liquid, FQHE 

(quantization of Rxy & vanishing of Rxx) at particular conditions

simpler description/understanding
in terms of a new (hypothetical) particle:

electron
(electric charge)

solenoids
(magnetic flux)

composite fermion
(charge+flux)

+ =



Composite fermions
Jain ’89

composite fermion (CF) = electron + correlation hole

= e + 2 vortices of many-body wave function
= e + 2 magnetic flux quanta hc/e

interaction → emergent (essentially) free quasiparticles

interacting electrons
in strong magnetic field 

almost free CFs in reduced magnetic field

(Fig. Kwon Park)



Composite fermions – experimental evidence

Magnetic field (T)
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R=0  → QHE (RH=const),  quantum liquid,  etc.

The plot of electric resistance (R) vs magnetic field (B),
in which R=0 signifies QHE, is strikingly self-similar



Composite fermions – experimental evidence

The plot of electric resistance (R) vs magnetic field (B),
in which R=0 signifies QHE, is strikingly self-similar



B→B*

Composite fermions – experimental evidence

The plot of electric resistance (R) vs magnetic field (B),
in which R=0 signifies QHE, is strikingly self-similar



Composite fermions – numerical evidence

Haldane model:

N electrons on sphere

field B from monopole 2Q

2Q=flux through surface

LL degeneracy=2Q+1

 ~ N/2Q

Average CF energies
Coulomb eigenenergies

E = total Coulomb energy, L = total angular momentum

Labels = correlation energy per particle

ℓ =Q

Q+1

LL0

LL1

generalized (monopole)

spherical harmonics: 

YQ,l,m(,), |m| ℓ

Coulomb interaction V=1/r

2Q
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(own work)



Own research: correlations in low dimensions

1. Interacting electrons in semiconductor quantum dots

2. Fractional quantum Hall effect / quantum liquids

 topological effects

 microscopic mechanisms of condensation

 interaction with light (optical properties)

 composite fermion theory

• CFs with residual interaction

• CFs with spin (→ skyrmions)

• CFs with additional freedom (flavor)

• realistic systems (thickness, finite magnetic field, disorder)

 interacting fermions on artificial lattices

3. Two-dimensional crystals (graphene, MoS2, etc.)



Summary of keywords and concepts

interactingelectrons in extreme conditions
(2D, atomic perfection, low T, high B)

→ strong correlations

topology – cause of universality / exactnessof 
a macroscopic (transport, electric) phenomenon:

quantum Hall effect

quantum phase of matter: quantum liquid

new particles: anyons, non-Abelions, and
composite fermions


