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Outline of the presentation:

= Modern control of turbojet engines

= The methodology of intelligent situational control
= Application of situational control on small turbojet engines



Outline of the presentation

1. Turbojet engines, state of the art
control systems

2. Advanced control algorithms for
turbojet engines

3. Intelligent situational control of
turbojet engines

4. Experimental results

5. Conclusion




Turbojet engines - principles
of operation

» Turbojet engine is a complex system operating in a very
broad spectrum of environments
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Turbojet engines - control
systems

» The present digital engine control systems with full
authority (FADEC - Full Authority Digital Engine
Control) allow flying with aircraft without needing

nearly any manipulation with the thrust lever by the
pilot

» Basic properties and tasks solved by FADEC control
sKstem can be described as follows as compiled b
the author from different literature resources:

» Electronic engine thrust control

Electronic control of engine auxiliary systems
Diagnostics of the engine’s parameters

Engine start-up, restart and shutdown control
Health monitoring, engine condition management

Interface to aircraft control busses, engine and
aircraft condition and management system (ECAM).
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Turbojet engines - control \
systems

» Control algorithms of the EEC unit are proprietary
to each engine; however the software usually
contains the fo[lowmg main parts:

» control software, with all control and limiting laws,

» monitoring software used for diagnostics and engine
health monitoring,

» interface to aircraft systems.
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Turbojet engines - control

algorithms
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Turbojet engines - control
algorithms

» All implemented algorithms need to be certified DO-
178c (Software Considerations in Airborne Systems and
Equipment Certification)

» Running on certified hardware RTOS systems with
special considerations put on long running times

» This leads to the most simplistic control algorithms (Pl
controllers

» P/PI controllers

» Simple limitters

» Scheduling algorithms
>

Direct inverse control




Advanced control of turbojet

engines

Improvements of speed control by
application of more advanced
control algorithms (robust
controllers, model predictive
control, LQ, etc.)

New diagnostic methodologies
based on intelligent algorithms
(mainly neural networks)

Situational control as a framework
methodology, which is modular
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Advanced control of turbojet
engines

Improvements of speed control by Hi-Freq. Vibration
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Advanced control of turbojet
engines

» N_dot control algorithm with two loops:

» Inner loop controls constant acceleration/deceleration in speed

» The outer loop controls the required power state (setpoint)
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Advanced control of turbojet
engines

» N_dot control algorithm with two loops:
» Inner loop controls constant acceleration/deceleration in speed

» The outer loop controls the required power state (setpoint)




Situational control
methodology

» Developed by professor Madarasz,
professor Spal and others

» Modular framework methodology,
which is able to contain many
methods for control of complex
systems

» Specifically suitable at control during
all operational states with emphasis
on strategies during the atypical ones

» Naturally applied in many systems

» Can be also connected with event-
based control.
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Situational control
methodology

» Decision making phase and control phase

» Formatter is using all available data about environment,

control, output and state variables.
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Intelligent situational control

» Using intelligent algorithms in decision making (situational
classification)

» Strong integration with diagnostic system (diagnostic
system has an influence on decision making process as well
as control algorithms)

» Selection of an optimal controller (control strategy) for
each control situation

» Switch controllers intelligently without abrupt changes in
the action hit without oscillations as with traditional
limiters in engine control (temperature limiter example)
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Intelligent situational control
for turbojet engines

State variables
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Situational control in turbojet
engines - power management
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Intelligent situational control
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iSTC-21v engine - own design developed from 2004 - MPM-20 engine,
Static thrust 300-500 N, variable exhaust nozzle (two degrees of freedom)

Intelligent engine, prototyping of new control algorithms

Situational control, integrated diagnostic/control systems




3 _ | iSTC-21v engine - own design developed from 2004 -
) ; MPM-20 engine,

O ¥ = : Static thrust 300-500 N, variable exhaust nozzle
/‘ pee y T J

Intelligent engine, prototyping of new control algorithms

Situational control, integrated diagnostic/control
systems

TJ-100 engine, FADEC controlled, digital DAQ
Static thrust 1000 N

Servesas standard

Research of dynamic engine properties

TJ-20 engine, FADEC controlled, digital DAQ
Static thrust 200 N
Students’ projects, diagnostics, modeling

KEGA project, cooperation with PBS

JetCAT-P80 engine, FADEC controlled, digital DAQ
Static thrust 80 N
Students’ projects, intelligent control

Cooperation with Honeywell




Intelligent situational control

» Situational control implementation on iSTC-21v

» Diagnostics + control = increased safety
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Turbo-compressor speed [rpm]

Implemented situational
controllers
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“ Pre-start control C4
“ Launch control C,
Ignition control Cs
Acceleration/deceleration Cs
“ Stable operation of the engine Cs
“ Idle control Ce
Compressor stall C;
“ Turbo-compressor over speed Cs
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Intelligent situational control

» Intelligent FADEC results (iSTC-21v vs. TJ-100):
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Solved and practically tested:
Switching of situational frames and controllers

Integration of diagnostic module into control (diagnostics
operates together with control)

In fully digital environment with application of embedded
controllers

Comparable or even better efficiency than the TJ-100
engine

Perspective intelligent FADEC design using embedded
micro controllers and a modular platform




Intelligent diagnostics

» Multiple model-based intelligent diagnostics module:
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/ Diagnostic module \
n_measured

Optical sensor

Pressure meter

Pressure meter

Nozzle meter

i

Mechanical

x 10"

n L1
Pra Voting
L method
Psc NARX Newral | o NARX |
> Network "
system
»  Box—Jenkins n_BJ L

Qrat
flow meter Model
-LT\
Nozzle meter

=~

— Optical sensor |
~— NARXneural network
Box - Jenkins model
Diagnostics output

I I3

20

30 40
t[s]




Thermovision based diagnostics - self organizing maps:
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Conclusion - future research

The future lies in efficient - green and safe
transportation

Intelligent situational control algorithms have the
potential to increase safety and efficiency of operatio
of turbojet engines and other complex systems

The methodology has been tested and applied on a
small iSTC-21v engine

The challenge lies in making the methodology
compatible with DO-178c¢

Situational control methodology is modular and usable
for control of other complex systems

Research is aimed at less rigid control system
architectures with cooperating controllers / morphing
structures / bag of controllers using new robust

intelligent algorithms with reinforcement learning



Conclusion - socio-economic impact

Improving the safety of operation of turbojet engines
results in safer transportation

Increase in efficiency of jet engines by development
intelligent control systems brings economic savings a
improves life of jet engines (lower stress during
different regimes of operation)

Sustainable aviation fuels testing and development
resulting in lower emissions decreases ecological
impacts of aviation transport on environment

Small turbojet engines can be used in unmanned
systems or even for specialized personal transporters,
which can be important in different tasks like rescue,
firefighting, etc.

Small turbine engines can be employed as power
generating units in more electric aircraft

Intelligent aero engines represent the future of
aviation propulsion by being safe, ecological and
efficient



Conclusion - cooperation

Development of innovative control strategies for
complex/large scale systems

Development of methodologies from the area of
computational cybernetics (deep neural networks,
hybrid algorithms)

Research and development of cost effective electronic
control systems and smart sensors

Research and development of efficient aircraft
propulsion systems using alternative/sustainable fuels

Research in the area of intelligent diagnostic and
systems for complex/large scale systems

Research in the area of predictive maintenance, sensor
fusion

Development and applications of micro turbojet
engines for unmanned aerial vehicles

Research of rapid prototyping technologies using
hardware and software in the loop systems



\ Thank you
for your
attention




