# Robust fuzzy clustering models with applications in medical imaging

László Szilágyi

September 6, 2022

#### MICCAI

- Medical Image Computation and Computer Assisted Interventions
  - The yearly medical imaging conference where the academia meets industry
  - This is where industry really goes fishing
- MICCAI 2011 Toronto
  - "Meet the leaders" session organized for young researchers
  - My question was: "Is there a future for medical image processing or everything is already discovered, solved, etc.?"
  - The era of level sets, shape models, appearance models seemed to be over
  - The answer was: medical image processing is expected to have a great future. And indeed, it has.

### What happened since MICCAI 2011?

- Data
  - Earlier everybody had to work with own data sets.
  - Now there are hundreds of challenges announced every year, most of which releasing data sets.
- Methodology
  - The evolution of computers and GPUs opened the horizon for CNN networks and deep learning. Much more complex methods can be implemented than earlier.
- MICCAI
  - Earlier: 250 accepted papers, 500+ participants from industry
  - Nowadays: 1000+ accepted papers, 2000+ participants from industry
  - MICCAI 2022: 30+ challenges

#### Need for speed automated image processing

- The number of medical imaging devices involved in clinical practice is rising
- The daily produced medical image data is constantly growing
- The number of human experts who can process the image data ... (???)
- It would be expensive to train the necessary number of experts.
- Would it be possible to find enough candidates? Probably no.
- There is a need for automated methods and procedures
  - To perform the bulk of the image processing tasks
  - To find the "suspected to be positive" cases
  - To show the human expert the positive records, human expert has the final word
  - Sometimes the computer is more accurate than a single human expert (e.g. mammography)
- Most important thing is ACCURACY. Minimize FALSE NEGATIVEs.

#### History: FCM, PCM şi PFCM

- Fuzzy c-means (Bezdek, 1981), Possibilistic c-means (Krishnapuram & Keller, 1993), Possibilistic-fuzzy c-means (Pal et al, 2005)
- Objective function

$$J_{\text{FCM}} = \sum_{i=1}^{c} \sum_{k=1}^{n} u_{ik}^{m} ||\mathbf{x}_{k} - \mathbf{v}_{i}||_{\mathbf{A}}^{2} \qquad J_{\text{PCM}} = \sum_{i=1}^{c} \sum_{k=1}^{n} \left[ t_{ik}^{p} ||\mathbf{x}_{k} - \mathbf{v}_{i}||_{\mathbf{A}}^{2} + (1 - t_{ik})^{p} \eta_{i} \right] \qquad J_{\text{PFCM}} = \sum_{i=1}^{c} \sum_{k=1}^{n} \left[ a u_{ik}^{m} + b t_{ik}^{p} \right] d_{ik}^{2} + \sum_{i=1}^{c} \eta_{i} \sum_{k=1}^{n} (1 - t_{ik})^{p} \eta_{i}$$
  
• Constraints  

$$\sum_{i=1}^{c} u_{ik} = 1 \qquad \forall k = 1 \dots n \qquad \begin{cases} 0 \le t_{ik} \le 1 \qquad \forall i = 1 \dots c, \forall k = 1 \dots n \\ 0 < \sum_{i=1}^{c} t_{ik} < c \qquad \forall k = 1 \dots n \end{cases}$$

• Partition update formula

$$u_{ik}^{\star} = \frac{d_{ik}^{-2/(m-1)}}{\sum\limits_{j=1}^{c} d_{jk}^{-2/(m-1)}} \quad \forall i = 1 \dots c \\ \forall k = 1 \dots n \quad t_{ik}^{\star} = \left[1 + \left(\frac{d_{ik}^{2}}{\eta_{i}}\right)^{1/(p-1)}\right]^{-1} \quad \forall i = 1 \dots c \\ \forall k = 1 \dots n \quad t_{ik}^{\star} = \left[1 + \left(\frac{bd_{ik}^{2}}{\eta_{i}}\right)^{1/(p-1)}\right]^{-1} \quad \forall i = 1 \dots c \\ \forall k = 1 \dots n \quad \forall k = 1 \dots n \quad t_{ik}^{\star} = \left[1 + \left(\frac{bd_{ik}^{2}}{\eta_{i}}\right)^{1/(p-1)}\right]^{-1} \quad \forall i = 1 \dots c \\ \forall k = 1 \dots n \quad \forall k = 1 \dots n \quad t_{ik}^{\star} = \left[1 + \left(\frac{bd_{ik}^{2}}{\eta_{i}}\right)^{1/(p-1)}\right]^{-1} \quad \forall i = 1 \dots c \\ \forall k = 1 \dots n \quad \forall k = 1 \dots n \quad t_{ik}^{\star} = \left[1 + \left(\frac{bd_{ik}^{2}}{\eta_{i}}\right)^{1/(p-1)}\right]^{-1} \quad \forall i = 1 \dots c \\ \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} u_{ik}^{m} \mathbf{x}_{k}}{\sum_{k=1}^{n} u_{ik}^{m}} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}] \mathbf{x}_{k}}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]} \quad \forall i = 1 \dots c \quad \mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]}{\sum_{k=1}^{n} [au_{ik}^{m} + bt_{ik}^{p}]$$

#### Some properties

- All these algorithms are very popular
- All of them have some disadvantages:
  - FCM is sensitive to noise (outliers)
  - PCM can produce coincident clusters (Keller 2009: "this is a property, not a disadvantage")
  - PFCM can attenuate these effects, but cannot eliminate them
- It would be useful to have some algorithm that works like gravity
  - An outlier should not have any effect on the clusters
    - Classical approach: F(c+1)M (Dave 1992)
    - Fuzzy-possibilistic product partition (Szilágyi, MDAI 2011)

#### Fuzzy-possibilistic product partition

• Intuition: we need a cluster prototype update formula like this

$$\mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} \mu_{ik}^{m} \tau_{ik}^{p} \mathbf{x}_{k}}{\sum_{k=1}^{n} \mu_{ik}^{m} \tau_{ik}^{p}} \qquad \forall i = 1 \dots c$$

- Probabilistic term and possibilistic term, not necessary to be the same as in FCM and PCM
- The operation between them is weighted averaging but multiplication

#### FPPPCM (FP3CM)

- Fuzzy-Possibilistic Product Partition C-Means (Szilágyi L, MDAI 2011)
- Objective function  $J_{\text{FP3CM}} = \sum_{i=1}^{c} \sum_{k=1}^{n} u_{ik}^{m} \left[ t_{ik}^{p} || \mathbf{x}_{k} - \mathbf{v}_{i} ||_{\mathbf{A}}^{2} + (1 - t_{ik})^{p} \eta_{i} \right]$
- Constraints  $\sum_{i=1}^{c} u_{ik} = 1 \qquad \forall k = 1 \dots n \qquad \begin{cases} 0 \le t_{ik} \le 1 \qquad \forall i = 1 \dots c, \forall k = 1 \dots n \\ 0 < \sum_{i=1}^{c} t_{ik} < c \quad \forall k = 1 \dots n \end{cases}$
- Partition update formulas

$$t_{ik}^{\star} = \begin{bmatrix} 1 + \left(\frac{d_{ik}^2}{\eta_i}\right)^{1/(p-1)} \end{bmatrix}^{-1} \qquad \forall i = 1 \dots c \\ \forall k = 1 \dots n \end{cases}$$

• Cluster prototypes update formula

$$u_{ik}^{\star} = \frac{[t_{ik}^{p} d_{ik}^{2} + \eta_{i} (1 - t_{ik})^{p}]^{-1/(m-1)}}{\sum_{j=1}^{c} [t_{jk}^{p} d_{jk}^{2} + \eta_{j} (1 - t_{jk})^{p}]^{-1/(m-1)}} \qquad \forall i = 1 \dots c$$
$$\forall k = 1 \dots n$$
$$\mathbf{v}_{i}^{\star} = \frac{\sum_{k=1}^{n} u_{ik}^{m} t_{ik}^{p} \mathbf{x}_{k}}{\sum_{k=1}^{n} u_{ik}^{m} t_{ik}^{p}} \qquad \forall i = 1 \dots c$$

### The FPPPCM (FP3CM) algorithm

Algorithm 1: The alternating optimization algorithm of FP3CM clustering algorithm

**Data:** Input data  $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n}$ 

**Result:** Final cluster prototypes  $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_c$ 

**Result:** Partition matrices  $\mathbf{U} = \{u_{ik}\}$  and  $\mathbf{T} = \{t_{ik}\}$ , with  $i = 1 \dots c, k = 1 \dots n$ Fix the number of clusters  $c, 2 \leq c \leq n$ ;

Set fuzzy exponent m and possibilistic exponent p, both greater than 1; Set possibilistic penalty terms  $\eta_i$   $(i = 1 \dots c)$ ;

Initialize cluster prototypes  $\mathbf{v}_i$   $(i = 1 \dots c);$ 

#### repeat

Update possibilistic membership values using Eq. (44);

Update probabilistic membership values using Eq. (48);

Update cluster prototypes using Eq. (51);

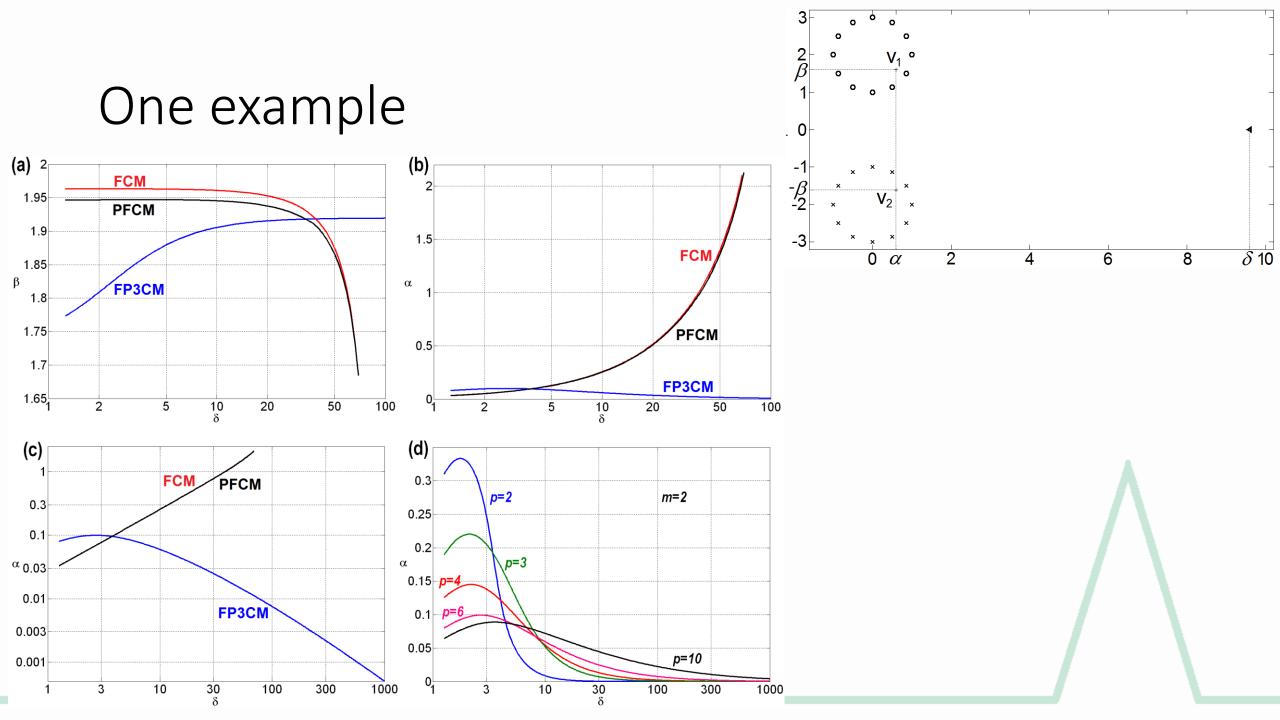
**until** cluster prototypes  $\mathbf{v}_i$   $(i = 1 \dots c)$  converge;

Defuzyfy of the obtained product partition as indicated in Eq. (53).

#### Advantages

- It uses less parameters than PFCM (c+2 instead of c+4)
- Not sensible to outliers
- Creates fine partitions, comparable to PFCM if there are no outliers

• Disadvantage: initialization of cluster prototypes need more attention



#### Another example

Circumstances

 $\sqrt{\eta_i}$ 

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

Limit

361

361

367

401

410

479

563

649

394

421

428

370

distance

b

3

3

3

3

5

5

5

5

a

2

2

 $\mathbf{2}$ 

2

1

1

1

1

Algo-

rithm

FCM

FPCM

FPCM

FPCM

PFCM

PFCM

PFCM

PFCM

PFCM

PFCM

PFCM

PFCM

m

 $\mathbf{2}$ 

2

 $\mathbf{2}$ 

2

2

2

2

2

 $\mathbf{2}$ 

 $\mathbf{2}$ 

 $\mathbf{2}$ 

2

p

5

2

1.2

2

2

2

2

5

5

5

5

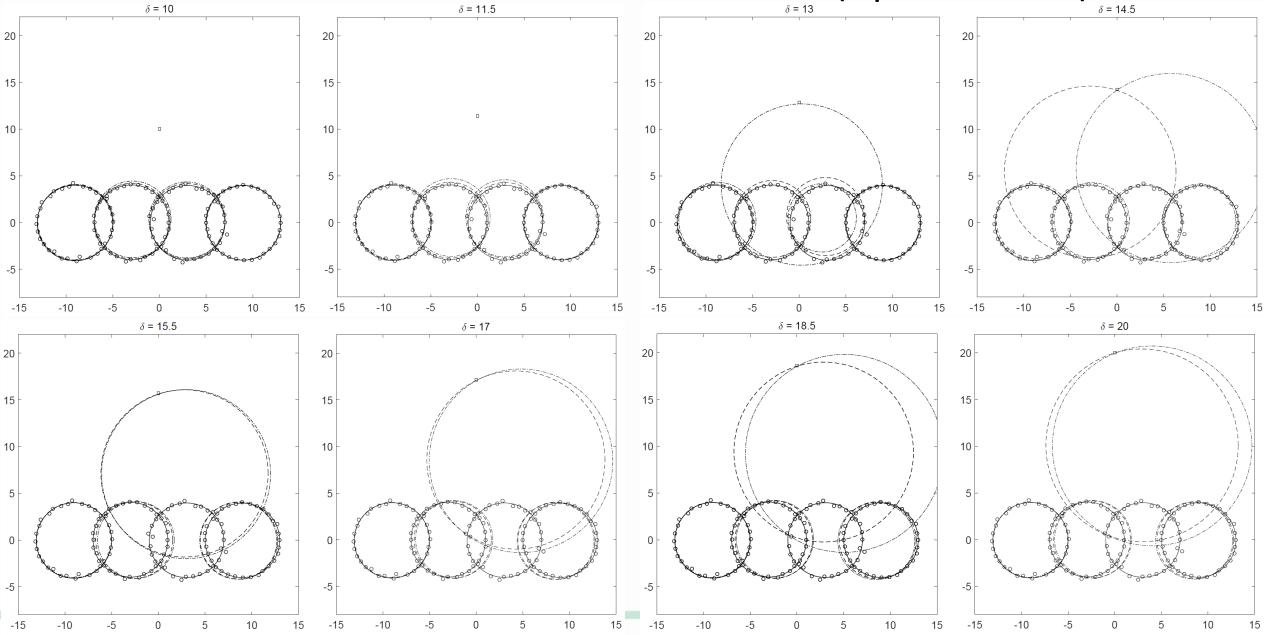
|                        |                |      |                 | 5-  | x x x<br>x + x<br>x x x x x | x + x + x + x + x + x + x + x + x + x + | x x x<br>x + x<br>x x x |    |    |    |    |
|------------------------|----------------|------|-----------------|-----|------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|----|----|----|----|
|                        |                |      |                 | -5- | ****<br>****<br>-5                                                                 | × * × ×<br>× + ×<br>× × × ×<br>0        | ×*××<br>× + ×<br>××××<br>5                                                    | 10 | 15 | 20 | 25 |
| Algo-                  | go- Circumstan |      | nces            |     | Limit                                                                              | -                                       |                                                                               |    |    |    |    |
| $\operatorname{rithm}$ | m              | p    | $\sqrt{\eta_i}$ | a   | b                                                                                  | distance                                |                                                                               |    |    |    |    |
| PFCM                   | 2              | 3    | 1.0             | 1   | 5                                                                                  | 437                                     | _                                                                             |    |    |    |    |
| PFCM                   | 2              | 3    | 1.5             | 1   | 5                                                                                  | 521                                     |                                                                               |    |    |    |    |
| PFCM                   | 2              | 3    | 2.0             | 1   | 5                                                                                  | 593                                     |                                                                               |    |    |    |    |
| PFCM                   | 2              | 3    | 2.5             | 1   | 5                                                                                  | 546                                     |                                                                               |    |    |    |    |
| PFCM                   | 2              | 2    | 1.0             | 1   | 5                                                                                  | 459                                     |                                                                               |    |    |    |    |
| PFCM                   | 2              | 2    | 1.5             | 1   | 5                                                                                  | 602                                     |                                                                               |    |    |    |    |
| PFCM                   | 2              | 2    | 2.0             | 1   | 5                                                                                  | 789                                     |                                                                               |    |    |    |    |
| PFCM                   | 2              | 2    | 2.5             | 1   | 5                                                                                  | 1001                                    |                                                                               |    |    |    |    |
| PFCM                   | 2              | 2    | 3.0             | 1   | 5                                                                                  | 1220                                    |                                                                               |    |    |    |    |
| PFCM                   | 2              | 2    | 4.0             | 1   | 5                                                                                  | 1354                                    |                                                                               |    |    |    |    |
| PFCM                   | 2              | 2    | 5.0             | 1   | 5                                                                                  | 1089                                    |                                                                               |    |    |    |    |
| FP3CM                  | wie            | de r | ange            |     |                                                                                    | $+\infty$                               |                                                                               |    |    |    |    |

#### Clustering IRIS data

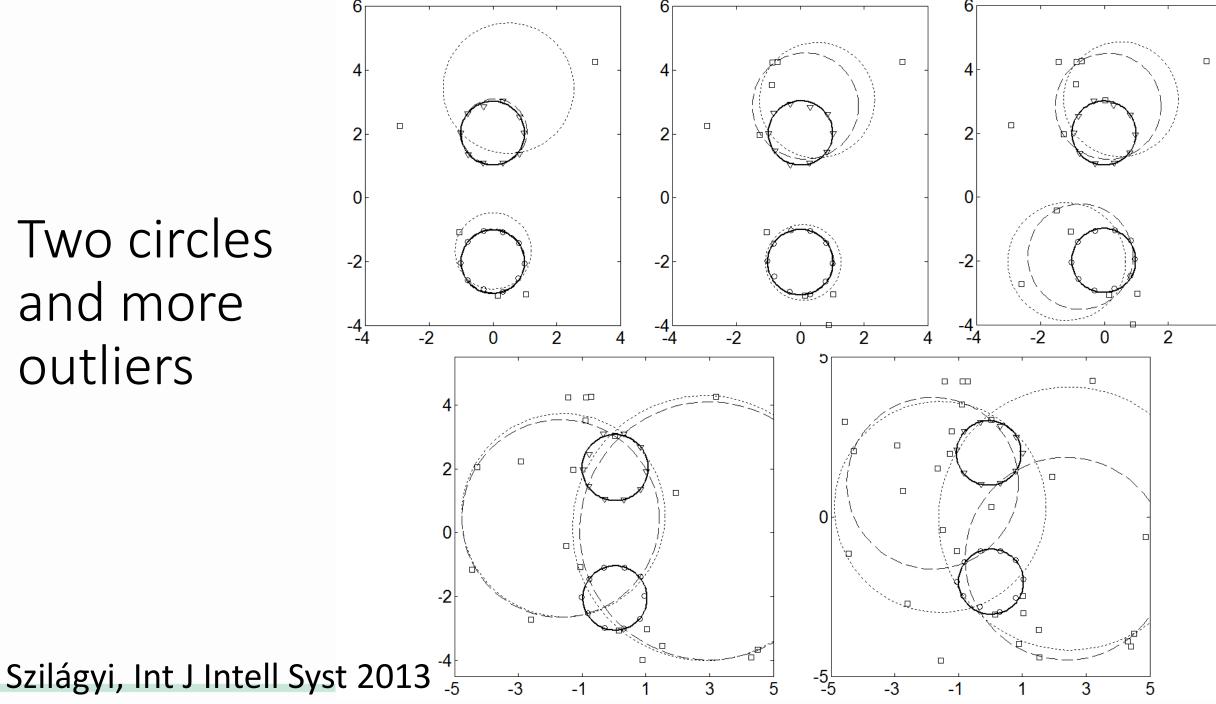
• IRIS DATA: 150 vectors, 4 dimensions, 3 classes, one additional outlier ( $\delta$ , $\delta$ , $\delta$ , $\delta$ )

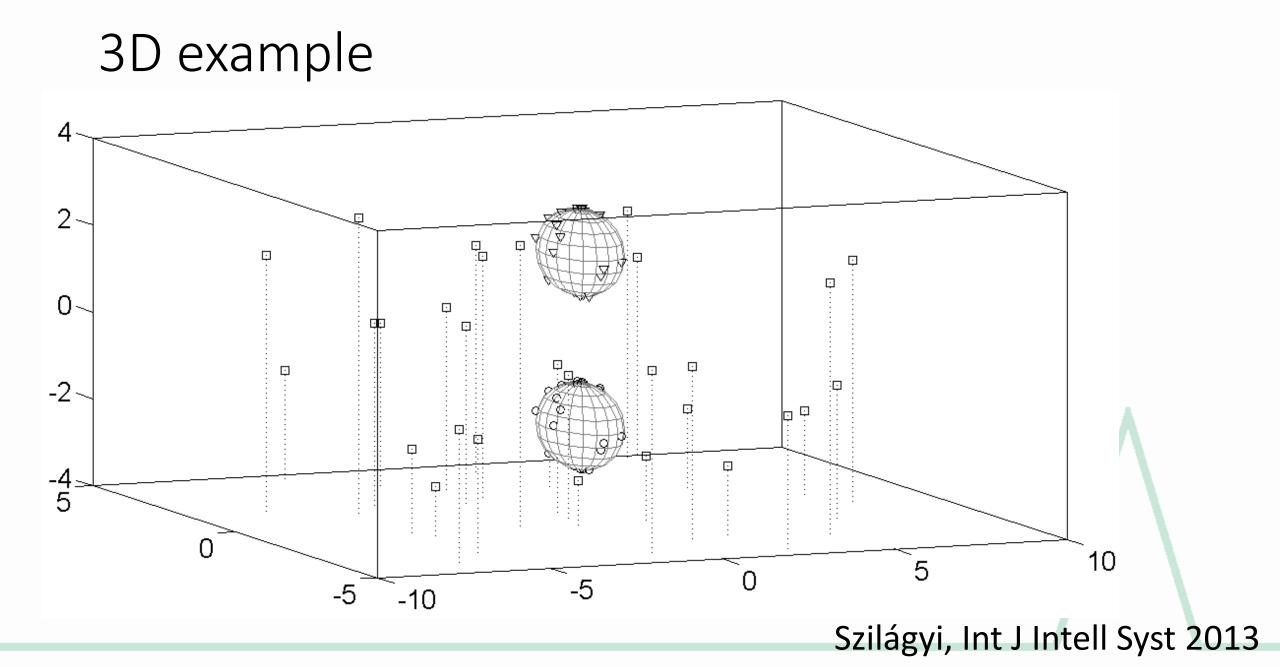
| Circum-               | IRIS       |                | FCM            |                | ł              | PFCM           | [              | F              | P3CN           | 1              | Correct                 |
|-----------------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------------|
| stances               | type       | $\mathbf{v}_1$ | $\mathbf{v}_2$ | $\mathbf{v}_3$ | $\mathbf{v}_1$ | $\mathbf{v}_2$ | $\mathbf{v}_3$ | $\mathbf{v}_1$ | $\mathbf{v}_2$ | $\mathbf{v}_3$ | decisions               |
| no                    | Setosa     | 50             | 0              | 0              | 50             | 0              | 0              | 50             | 0              | 0              | $FCM \rightarrow 136$   |
| outlier               | Versicolor | 0              | 47             | 3              | 0              | 47             | 3              | 0              | 48             | 2              | $PFCM \rightarrow 136$  |
| added                 | Virginica  | 0              | 11             | 39             | 0              | 11             | 39             | 0              | 7              | 43             | $FP3CM \rightarrow 141$ |
| outlier               | Setosa     | 50             | 0              | 0              | 50             | 0              | 0              | 50             | 0              | 0              | $FCM \rightarrow 134$   |
| added                 | Versicolor | 0              | 50             | 0              | 0              | 50             | 0              | 0              | 47             | 3              | $PFCM \rightarrow 135$  |
| at 20                 | Virginica  | 0              | 16             | 34             | 0              | 15             | 35             | 0              | $\overline{7}$ | 43             | $FP3CM \rightarrow 140$ |
| outlier               | Setosa     | 50             | 0              | 0              | 50             | 0              | 0              | 50             | 0              | 0              | $FCM \rightarrow 128$   |
| added                 | Versicolor | 1              | 49             | 0              | 1              | 49             | 0              | 0              | 47             | 3              | $PFCM \rightarrow 131$  |
| at 30                 | Virginica  | 0              | 21             | 29             | 0              | 18             | 32             | 0              | 7              | 43             | $FP3CM \rightarrow 140$ |
| outlier               | Setosa     | 50             | 0              | 0              | 50             | 0              | 0              | 50             | 0              | 0              | FCM crashes             |
| added at              | Versicolor | 3              | 47             | 0              | 3              | 47             | 0              | 0              | 47             | 3              | PFCM crashes            |
| $50 \text{ or } 10^6$ | Virginica  | 0              | 50             | 0              | 0              | 50             | 0              | 0              | $\overline{7}$ | 43             | $FP3CM \rightarrow 140$ |

#### FPPP based detection of circles (spheroids)

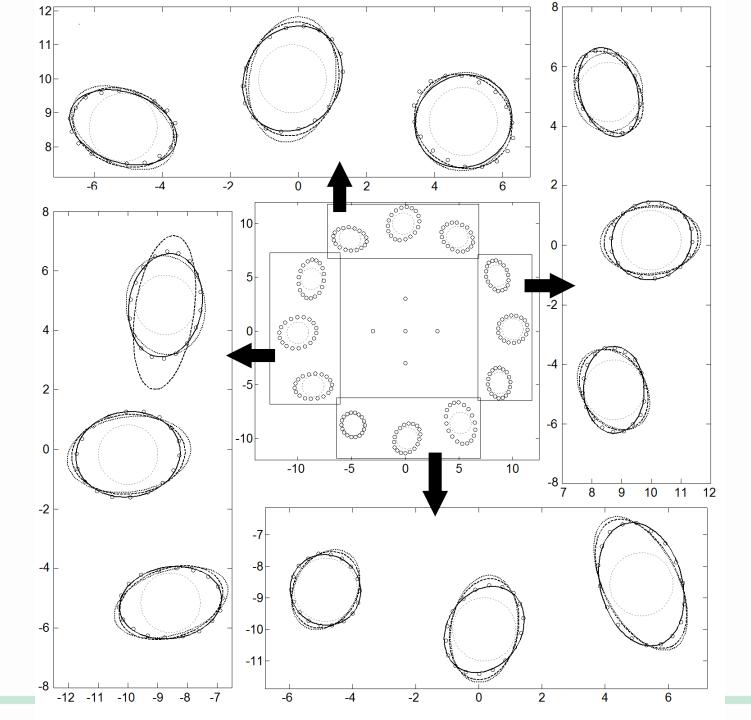


#### Two circles and more outliers





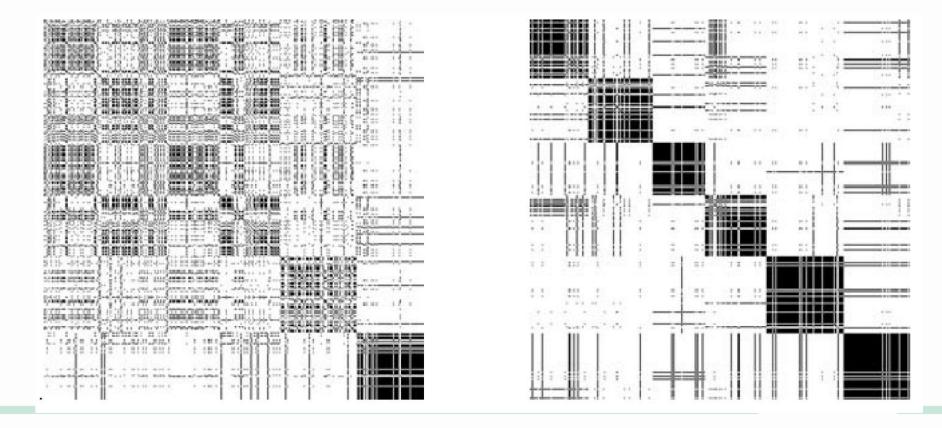
#### Detection of ellipses in the presence of outliers



Szilágyi et al, MDAI 2014

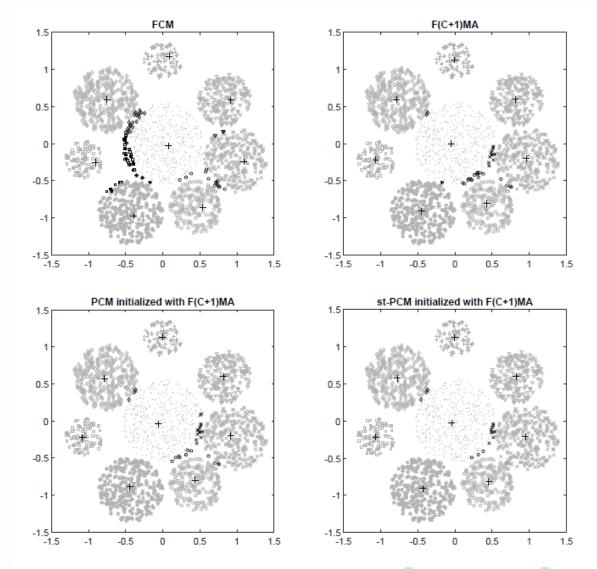
#### Real-life application

- Gosztolya & Szilágyi, Acta Polytech Hung 2015
- Blind speaker clustering, 6 speakers
- Confusion matrix: classical approach vs. FPPP based approach

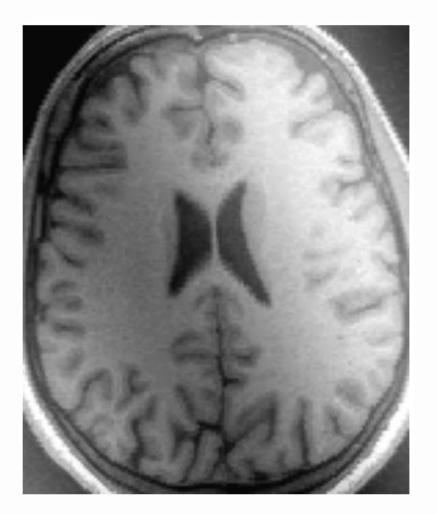


### Self-tuning possibilistic c-means

- Szilágyi et al, Int J Fuzz Uncert Knowl Based Syst, 2019
- Combines
  - Possibilistic c-means
  - Cluster size regulatory variable
- Initialized by (c+1)-means



## Intensity non-uniformity compensation and segmentation of MRI data



- MRI: the same tissue can be represented by different intensity values
- INU: noise of low frequency but high amplitude

Additive noise model:

 $x_k = y_k - b_k$ 

- $x_k$ : real intensity of pixel k
- $y_k$ : observed intensity of pixel k
- $b_k$ : estimated noise at pixel k

#### Noise compensation with c-means clustering

• Objective function:  $J_{\text{FCM}-b} = \sum_{i=1}^{c} \sum_{k=1}^{n} u_{ik}^{m} (y_k - b_k - v_i)^2$   $J_{\text{FCM}-qb} = \sum_{i=1}^{c} \sum_{l \in \Omega^{(t)}} H_l^{(t)} u_{il}^{m} (l - v_i)^2$ 

• Partition 
$$u_{ik} = \frac{(y_k - b_k - v_i)^{-2/(m-1)}}{\sum\limits_{j=1}^c (y_k - b_k - v_j)^{-2/(m-1)}} \quad \frac{i = 1 \dots c}{k = 1 \dots n} \qquad u_{il} = \frac{(l - v_i)^{-2/(m-1)}}{\sum\limits_{j=1}^c (l - v_j)^{-2/(m-1)}} \quad \frac{i = 1 \dots c}{l \in \Omega^{(t)}}$$

Cluster prototypes

$$v_{i} = \frac{\sum_{k=1}^{n} u_{ik}^{m} (y_{k} - b_{k})}{\sum_{k=1}^{n} u_{ik}^{m}} \quad i = 1 \dots c$$

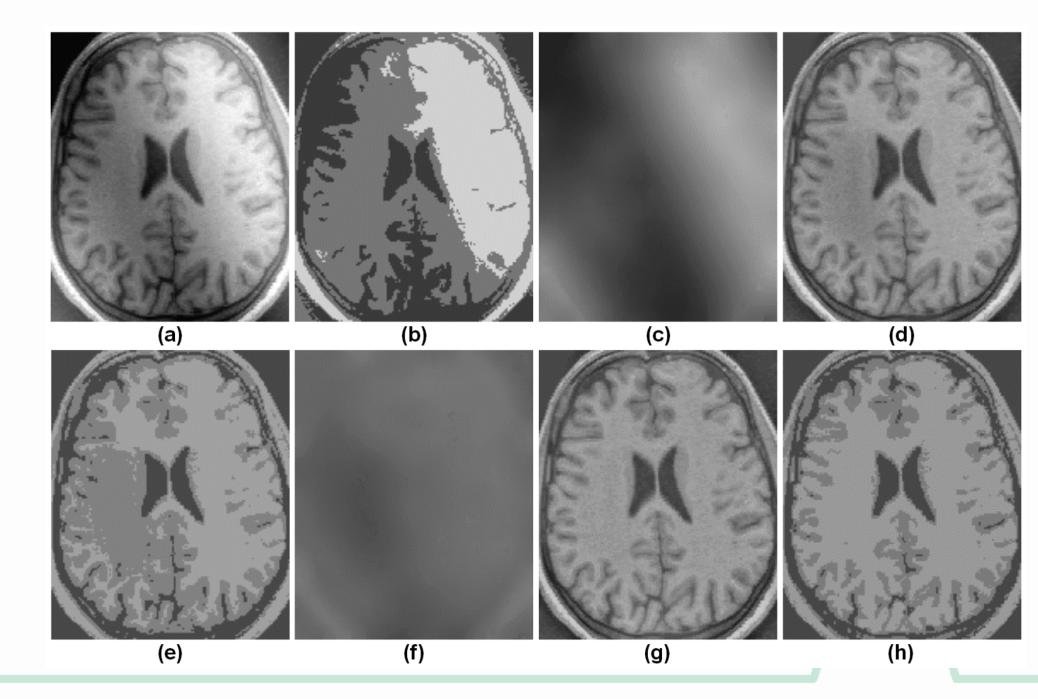
• Estimated noise:

Szilágyi et al, CMPB 2012

$$b_k = y_k - \frac{\sum_{i=1}^{c} u_{ik}^m v_i}{\sum_{i=1}^{c} u_{ik}^m} \quad k = 1 \dots n$$

 $v_{i} = \frac{\sum\limits_{l \in \Omega^{(t)}} H_{l}^{(t)} u_{il}^{m} l}{\sum\limits_{l \in \Omega^{(t)}} H_{l}^{(t)} u_{il}^{m}} \quad i = 1 \dots c$   $b_{k} = y_{k} - q_{l_{k}} \quad l_{k} = y_{k} - b_{k}^{(t-1)}$   $q_{l} = \frac{\sum\limits_{i=1}^{c} u_{il}^{m} v_{i}}{\sum\limits_{i=1}^{c} u_{il}^{m}} \quad k = 1 \dots n$   $l \in \Omega^{(t)}$ 

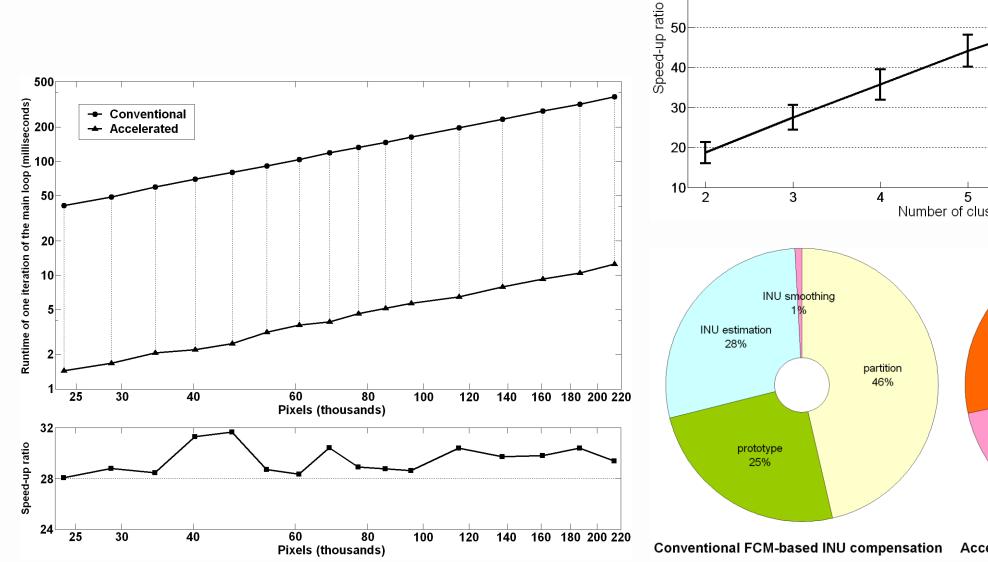
#### Results

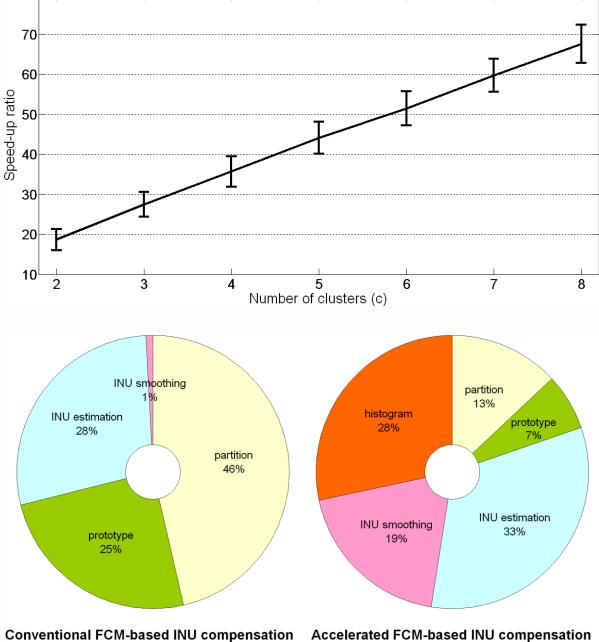


#### Algorithm complexity

| Algorithmic                | Conventional        | Accelerated               |
|----------------------------|---------------------|---------------------------|
| $\operatorname{step}$      | (FCM-b)             | (FCM-qb)                  |
| Partition updating         | $\mathcal{O}(nc^2)$ | $\mathcal{O}(\omega c^2)$ |
| Cluster prototype updating | $\mathcal{O}(nc)$   | $\mathcal{O}(\omega c)$   |
| Bias estimation            | $\mathcal{O}(nc)$   | $\mathcal{O}(n+\omega c)$ |
| Bias smoothing             | $\mathcal{O}(n)$    | $\mathcal{O}(n)$          |
| Histogram updating         |                     | $\mathcal{O}(n)$          |

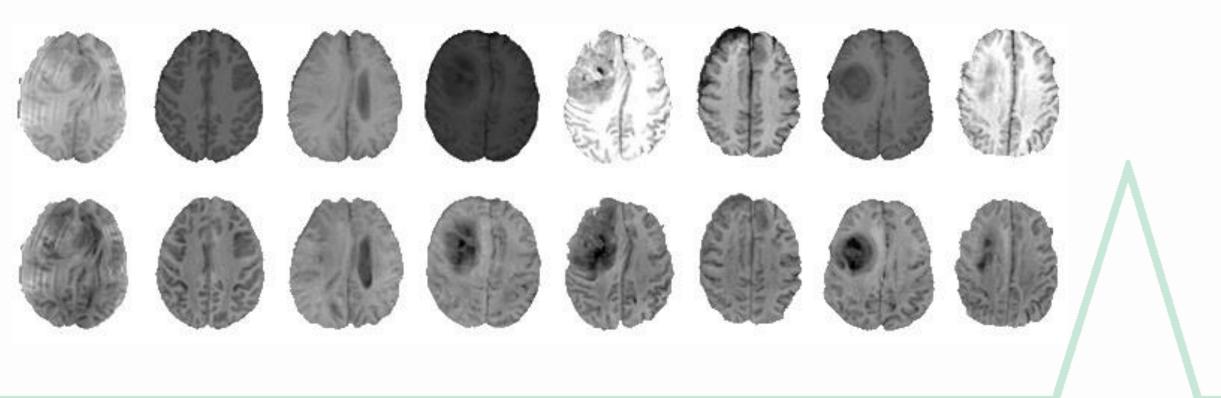






#### Histogram normalization in MRI

- There is no absolute scale in MRI data
- Intensity values must be interpreted together with their context



#### Existing methods

- Nyúl et al (2000) cited by 782, piecewise linear transform
- Leung et al (2010) cited by 133, segmentation + tissue based alignment
- Weisenfeld et al (2004) cited by 77, Kullback-Leibler divergence
- Shinohara et al (2011) cited by 45, PCA
- Jäger et al (2006) cited by 32, hidden Markov random fields
- Linear transform

#### Brain tissue and brain tumor segmentation

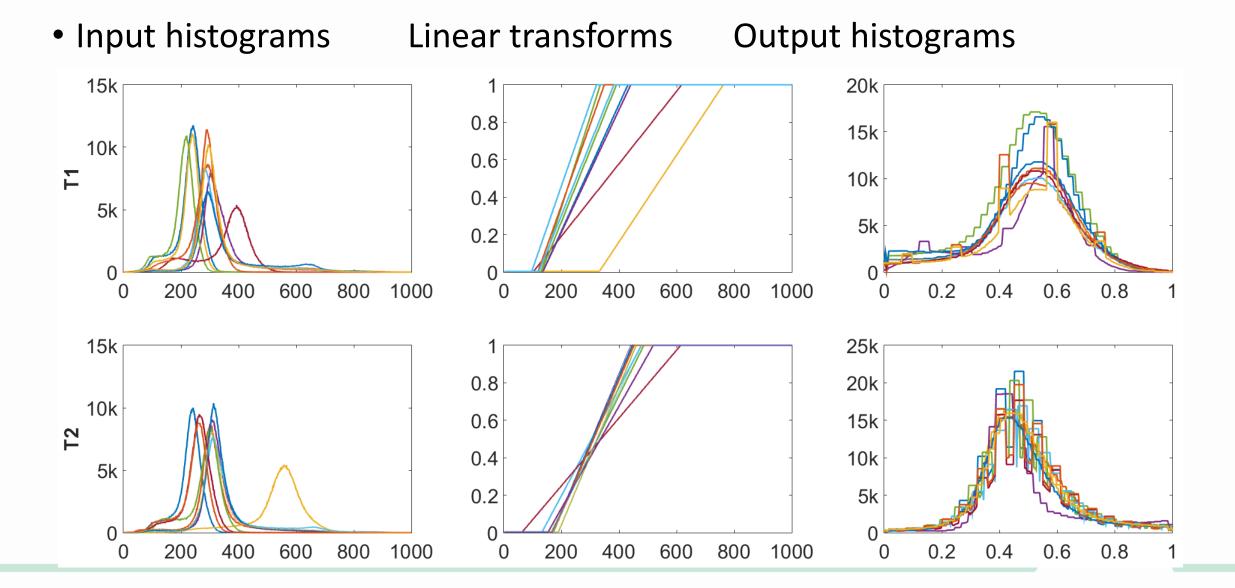
- Widely used method: Nyúl et al (2000)
  - Piecewise linear transform established via matching predefined milestones of the histograms
  - Most papers use it without saying any details of the chosen milestones
  - Some papers (Soltaninejad 2018, Pinto 2018) say they use 10-12 milestones
  - Some papers (Tustison 2015) say that a linear transform led to better segmentation
- Question: which method is more accurate?

#### Input Data

- Medical Image Computation and Computer Aided Interventions (MICCAI)
- Brain Tumor Segmentation Challenge (BraTS) since 2012
- BraTS train dataset 2019
  - 76 low-grade (LG) and 259 high-grade (HG) volumes
- Multispectral (T1, T2, T1C, FLAIR)
- 155 x 240 x 240 image voxels
- Ground truth (GT): negative, enhancing core, tumor core, edema
- Skull removed
- This study uses 50 selected LG volumes

- 6-month infant brain Segmentation Challenge (iSeg-2017, iSeg-2019)
- iSeg-2017 train dataset
  - 10 volumes
- Multispectral (T1, T2)
- 256 x (144 x 192) image voxels
- Ground truth: cerebro-spinal fluid (CSF), grey matter (GM), white matter (WM)
- Skull removed
- This study uses all 10 volumes of iSeg-2017 train dataset

#### Algorithm A1 – Linear transform

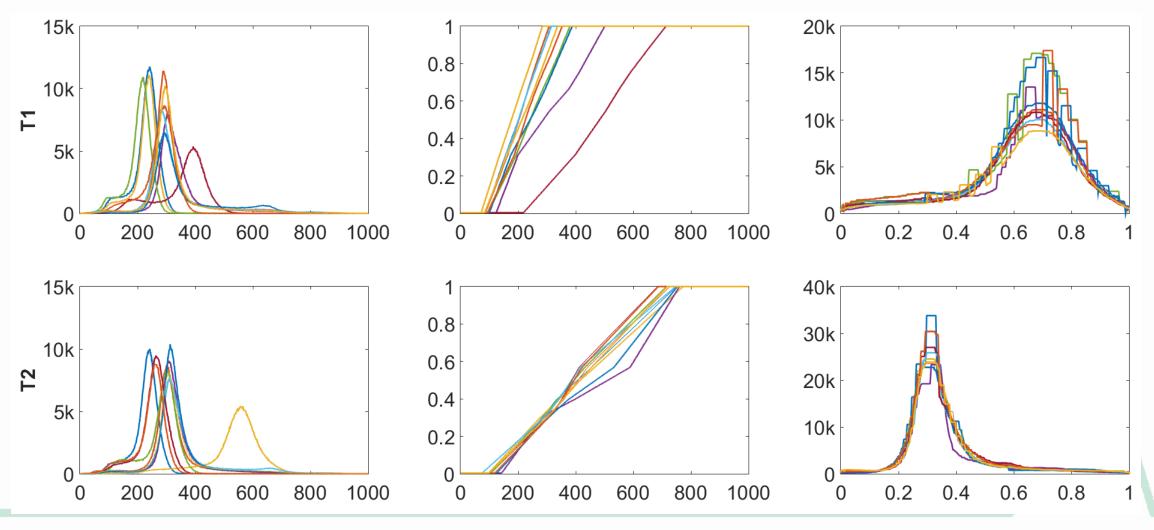


#### Algorithm A2 – Method of Nyúl et al (2000)

• Input histograms

Piecewise linear transforms Outp

Output histograms

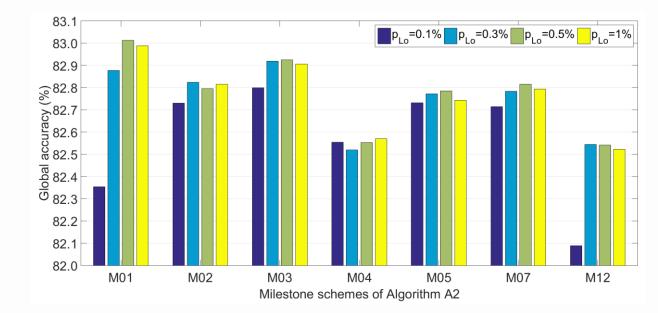


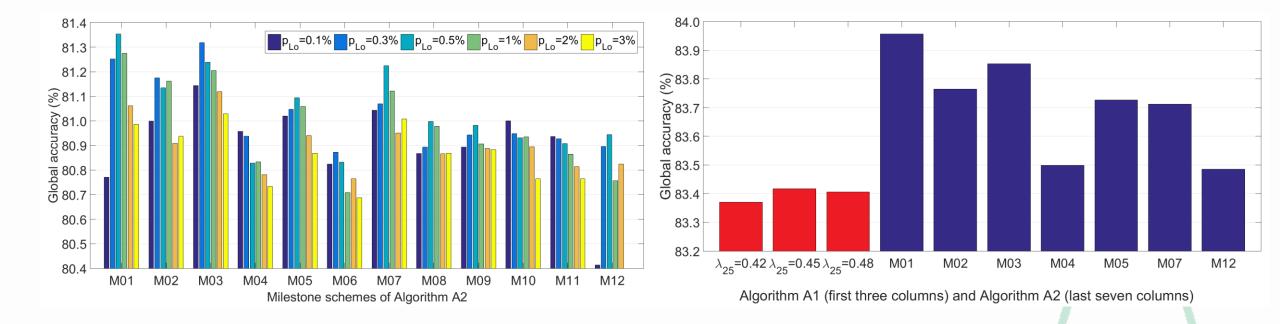
#### Parameters

- Linear transform (Algorithm A1)
  - Single parameter  $\lambda_{25} \in [0.3, 0.5)$ , percentile  $p_{25} \rightarrow \lambda_{25}$  and  $p_{75} \rightarrow (1 - \lambda_{25})$
- Nyúl et al (2000) (Algorithm A2)
  - Parameter  $p_{Lo} < 0.03$ ,  $p_{Hi} = 1 p_{Lo}$  define the tails of the input histogram to be cut
  - Set of milestones defined as percentiles to be matched in all histograms

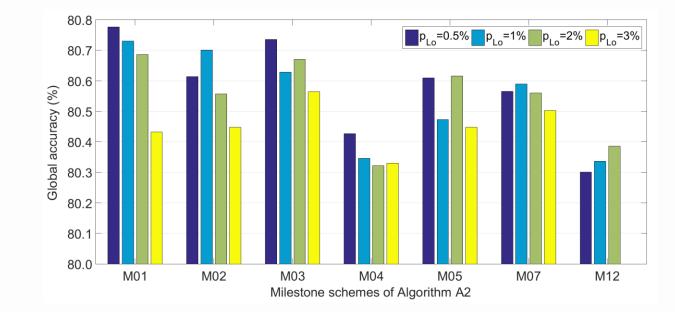
| Scheme | Landmark points                                                                                |
|--------|------------------------------------------------------------------------------------------------|
| M01    | $p_{ m Lo}, p_{ m 50}, p_{ m Hi}$                                                              |
| M02    | $p_{\mathrm{Lo}}, p_{25}, p_{75}, p_{\mathrm{Hi}}$                                             |
| M03    | $p_{ m Lo}, p_{25}, p_{50}, p_{75}, p_{ m Hi}$                                                 |
| M04    | $p_{ m Lo}, p_{10}, p_{50}, p_{90}, p_{ m Hi}$                                                 |
| M05    | $p_{ m Lo}, p_{20}, p_{40}, p_{60}, p_{80}, p_{ m Hi}$                                         |
| M06    | $p_{ m Lo}, p_{10}, p_{25}, p_{75}, p_{90}, p_{ m Hi}$                                         |
| M07    | $p_{ m Lo}, p_{20}, p_{35}, p_{50}, p_{65}, p_{80}, p_{ m Hi}$                                 |
| M08    | $p_{ m Lo}, p_{10}, p_{25}, p_{50}, p_{75}, p_{90}, p_{ m Hi}$                                 |
| M09    | $p_{ m Lo}, p_{10}, p_{25}, p_{40}, p_{60}, p_{75}, p_{90}, p_{ m Hi}$                         |
| M10    | $p_{ m Lo}, p_{10}, p_{25}, p_{40}, p_{50}, p_{60}, p_{75}, p_{90}, p_{ m Hi}$                 |
| M11    | $p_{ m Lo}, p_{10}, p_{20}, p_{30}, p_{40}, p_{60}, p_{70}, p_{80}, p_{90}, p_{ m Hi}$         |
| M12    | $p_{ m Lo}, p_{10}, p_{20}, p_{30}, p_{40}, p_{50}, p_{60}, p_{70}, p_{80}, p_{90}, p_{ m Hi}$ |

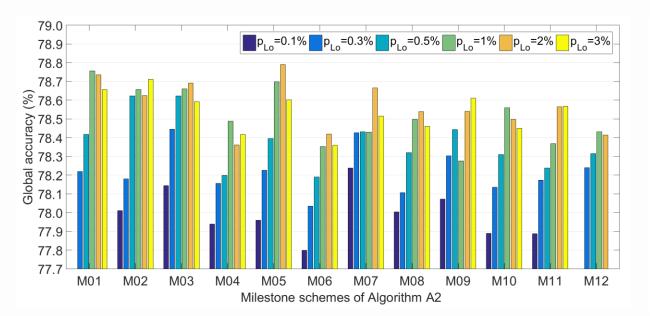
### Algorithm A2 Random forest iSeg-2017 data

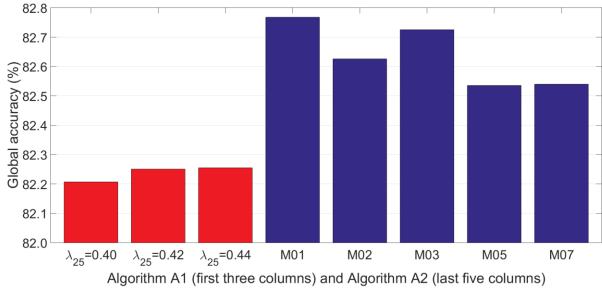




#### Algorithm A2 KNN iSeg-2017 data

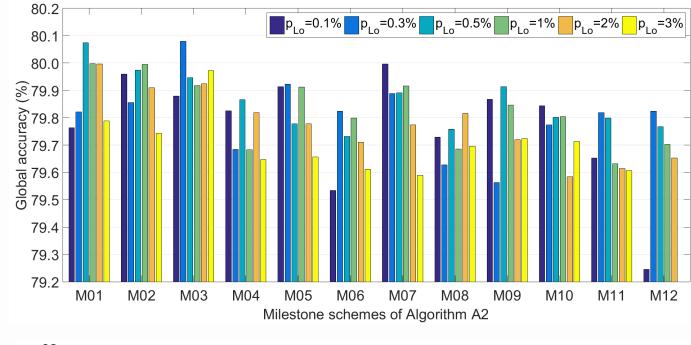


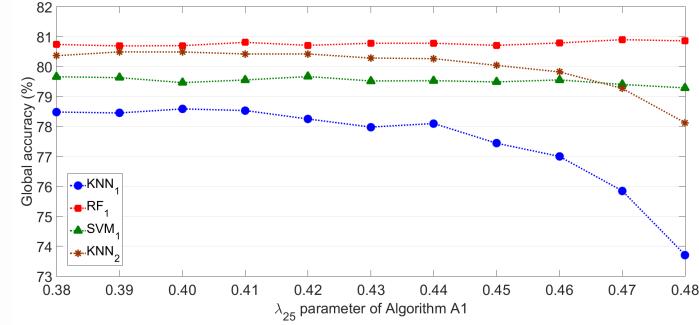




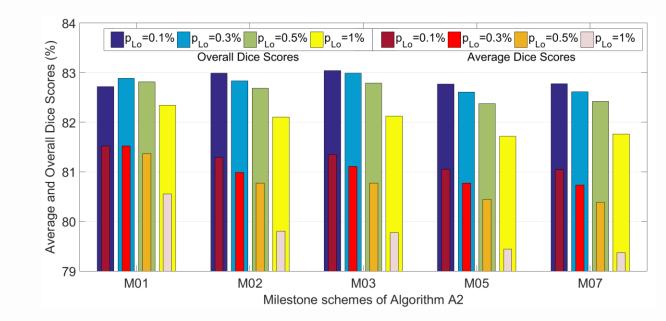
#### Algorithm A2 SVM iSeg-2017 data

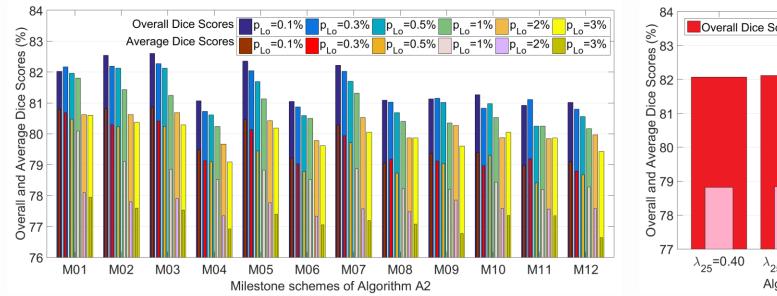
Algorithm A1 RF, KNN, SVM iSeg-2017 data

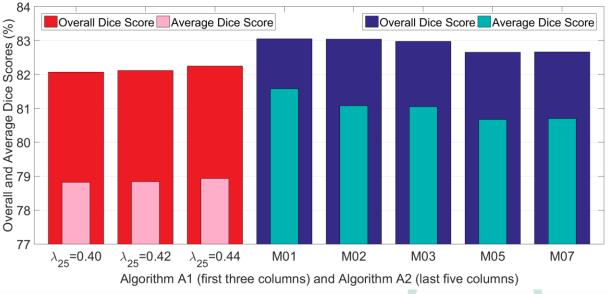




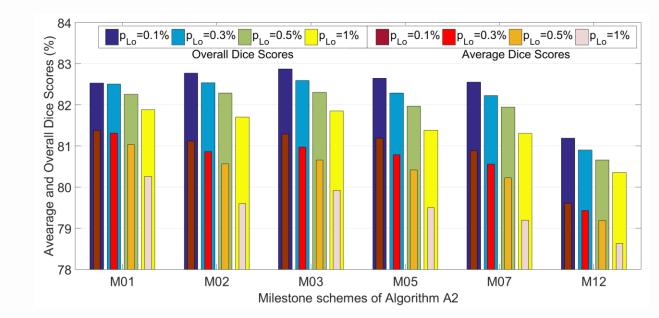
#### Algorithm A2 Random forest BraTS 2019 data

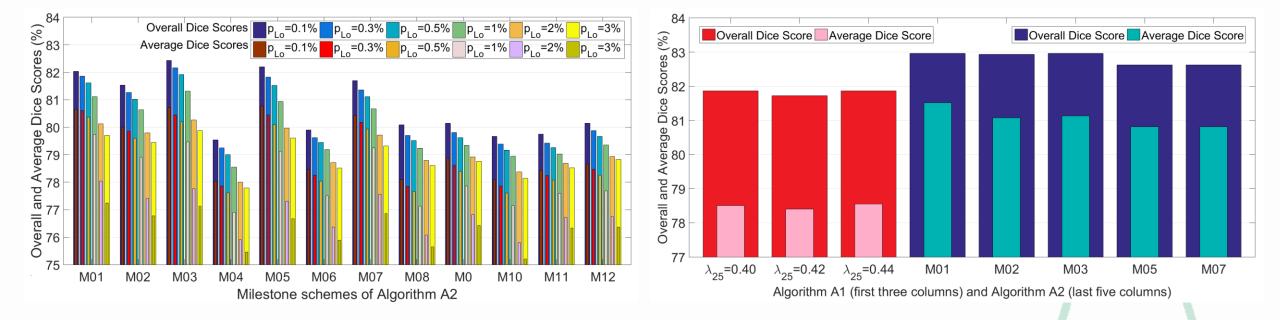






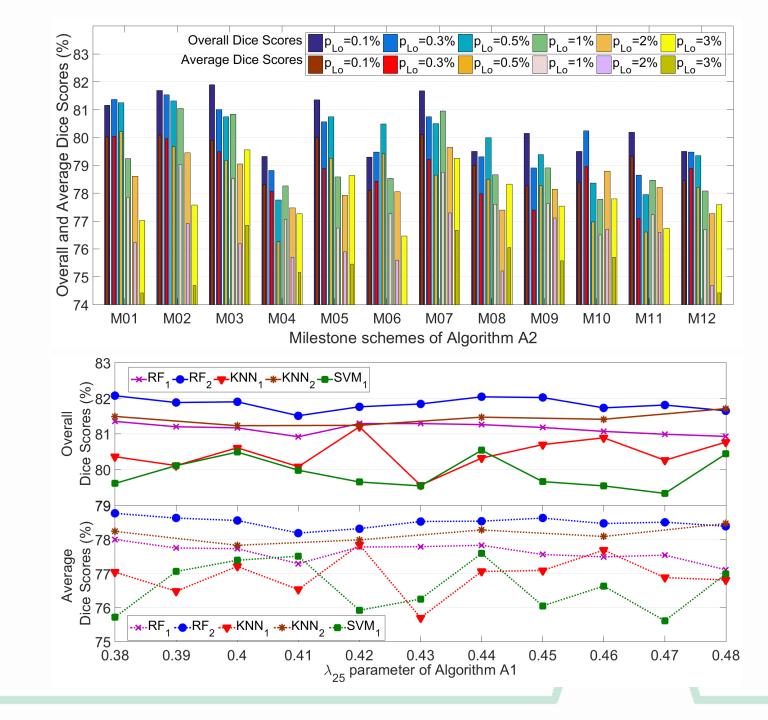
#### Algorithm A2 KNN BraTS 2019 data



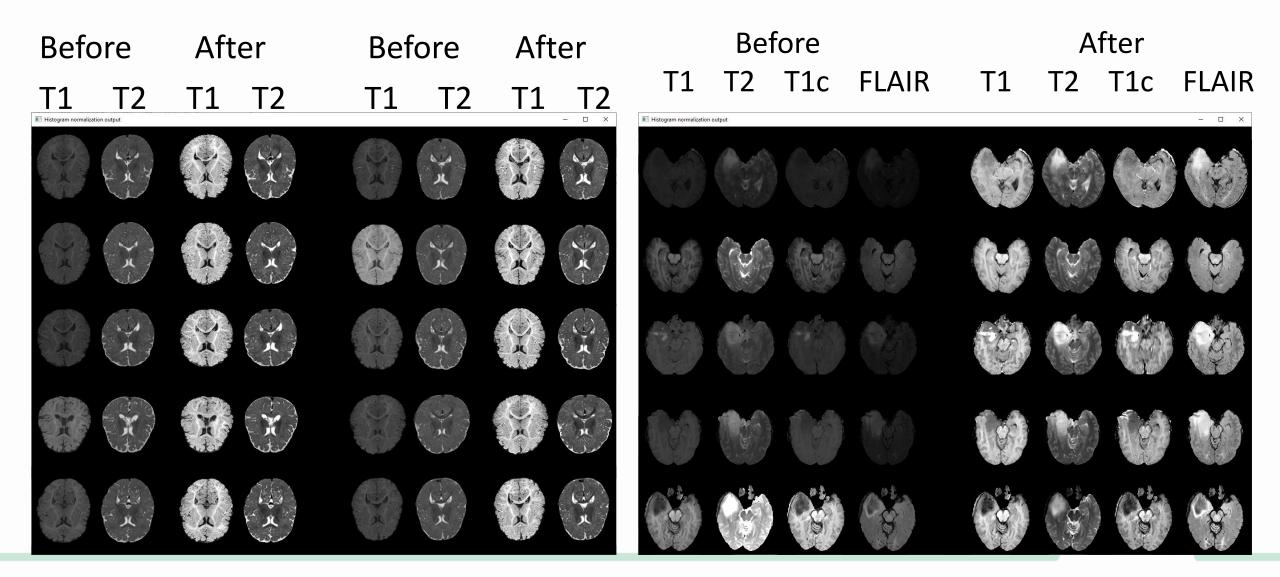


#### Algorithm A2 SVM BraTS 2019 data

## Algorithm A1 RF, KNN, SVM BraTS 2019 data



#### Before and after histogram normalization



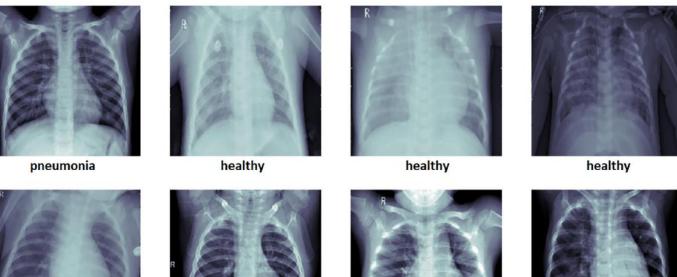
#### Conclusions

- Algorithm A2 can perform better than the linear transform
- Right parameter setting is required
  - Not too many milestones
  - First milestone better at  $p_{20}$  than  $p_{10}$ , last one better at  $p_{80}$  than  $p_{90}$
- Considerable part of the brain segmentation research community may use the method of Nyúl et al the wrong way
- They may achieve Dice scores up to 1% higher via using the right parameter setting

| Scheme | Landmark points                                                                                |
|--------|------------------------------------------------------------------------------------------------|
| M01    | $p_{ m Lo}, p_{ m 50}, p_{ m Hi}$                                                              |
| M02    | $p_{ m Lo}, p_{25}, p_{75}, p_{ m Hi}$                                                         |
| M03    | $p_{ m Lo}, p_{25}, p_{50}, p_{75}, p_{ m Hi}$                                                 |
| M04    | $p_{ m Lo}, p_{10}, p_{50}, p_{90}, p_{ m Hi}$                                                 |
| M05    | $p_{ m Lo}, p_{20}, p_{40}, p_{60}, p_{80}, p_{ m Hi}$                                         |
| M06    | $p_{ m Lo}, p_{10}, p_{25}, p_{75}, p_{90}, p_{ m Hi}$                                         |
| M07    | $p_{ m Lo}, p_{20}, p_{35}, p_{50}, p_{65}, p_{80}, p_{ m Hi}$                                 |
| M08    | $p_{ m Lo}, p_{10}, p_{25}, p_{50}, p_{75}, p_{90}, p_{ m Hi}$                                 |
| M09    | $p_{ m Lo}, p_{10}, p_{25}, p_{40}, p_{60}, p_{75}, p_{90}, p_{ m Hi}$                         |
| M10    | $p_{ m Lo}, p_{10}, p_{25}, p_{40}, p_{50}, p_{60}, p_{75}, p_{90}, p_{ m Hi}$                 |
| M11    | $p_{ m Lo}, p_{10}, p_{20}, p_{30}, p_{40}, p_{60}, p_{70}, p_{80}, p_{90}, p_{ m Hi}$         |
| M12    | $p_{ m Lo}, p_{10}, p_{20}, p_{30}, p_{40}, p_{50}, p_{60}, p_{70}, p_{80}, p_{90}, p_{ m Hi}$ |

#### Pneumonia detection using CNN

- Szepesi & Szilágyi, Biocybern Biomed Eng 2022
- Signs of pneumonia not really visible
- Chest x-ray scans of infants (1-5 years)





healthy





pneumonia



healthy

#### Modified CNN model: using dropout in the convolutional part of the network

Table 2 – Comparison of network architectures involved in this study, and their obtained benchmark values during testing. Accuracy, recall, precision,  $F_1$  score, and AUC are presented as average value  $\pm$  standard deviation.

| Network                   | Proposed 1        | model                              |                  | Transfer learning |                                    |  |  |
|---------------------------|-------------------|------------------------------------|------------------|-------------------|------------------------------------|--|--|
| model                     | without dropout   | with dropout                       | InceptionV3      | ResNet50          | VGG-19                             |  |  |
| Parameters                | 10.6 M            | 10.6 M                             | 26.2 M           | 24.8 M            | 145.2 M                            |  |  |
| Accuracy (%)              | $95.67 \pm 1.50$  | $\textbf{97.21} \pm \textbf{1.13}$ | $90.94 \pm 1.72$ | $89.06 \pm 1.64$  | $61.19 \pm 1.13$                   |  |  |
| Recall (%)                | $95.54 \pm 1.95$  | $97.34 \pm 1.56$                   | $89.10 \pm 1.55$ | $86.23 \pm 2.31$  | $61.88 \pm 1.61$                   |  |  |
| Precision (%)             | $95.50 \pm 1.22$  | $97.40 \pm 1.21$                   | $91.89 \pm 1.04$ | $91.43 \pm 1.59$  | $62.33 \pm 0.88$                   |  |  |
| $F_1$ score (%)           | $95.52 \pm 1.46$  | $97.37 \pm 1.32$                   | $90.47 \pm 1.24$ | $88.75 \pm 1.88$  | $\textbf{62.10} \pm \textbf{1.14}$ |  |  |
| AUC                       | $0.970 \pm 0.005$ | $0.982\pm0.006$                    | $0.936\pm0.010$  | $0.921\pm0.008$   | $0.682\pm0.016$                    |  |  |
| Training time (50 epochs) | 2304 s            | 2433 s                             | 6247 s           | 5750 s            | 6577 s                             |  |  |
| Single inference time     | 122 ms            | 122 ms                             | 307 ms           | 298 ms            | 313 ms                             |  |  |

Table 3 – Test performance of the proposed model at various dropout rates. All indicators are presented as average value  $\pm$  standard deviation.

| Dropout rate    | No dropout                          | 10%                                 | 20%                                 | 30%                                 | 40%                                | 50%              |
|-----------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|------------------|
| Accuracy (%)    | $95.67 \pm 1.50$                    | $95.88 \pm 0.95$                    | $96.05 \pm 1.44$                    | $\textbf{96.54} \pm \textbf{1.39}$  | $\textbf{97.21} \pm \textbf{1.13}$ | $95.52 \pm 1.12$ |
| Recall (%)      | $95.54 \pm 1.95$                    | $95.70 \pm 1.21$                    | $95.55 \pm 1.89$                    | $96.14 \pm 1.16$                    | $97.34 \pm 1.56$                   | $96.12\pm0.96$   |
| Precision (%)   | $95.50 \pm 1.22$                    | $95.48 \pm 1.78$                    | $95.60 \pm 1.52$                    | $96.43 \pm 1.40$                    | $97.40 \pm 1.21$                   | $95.64 \pm 1.19$ |
| $F_1$ score (%) | $95.52 \pm 1.46$                    | $95.59 \pm 1.44$                    | $95.57 \pm 1.68$                    | $96.28 \pm 1.27$                    | $97.37 \pm 1.32$                   | $95.88 \pm 1.06$ |
| AUC             | $\textbf{0.970} \pm \textbf{0.005}$ | $\textbf{0.972} \pm \textbf{0.003}$ | $\textbf{0.974} \pm \textbf{0.004}$ | $\textbf{0.976} \pm \textbf{0.004}$ | $0.982\pm0.006$                    | $0.971\pm0.005$  |

#### Comparison with recent solutions

#### Table 5 – Comparison with state-of-the-art methods from the literature.

| Paper                   | Year | Method                   | Data                | F <sub>1</sub> score | Runtime          |
|-------------------------|------|--------------------------|---------------------|----------------------|------------------|
| Brunese et al. [4]      | 2020 | VGG-16                   | 6523 CXR            | 97%                  | 2.5 s            |
| Panwar et al. [5]       | 2020 | VGG-19 + GradCAM         | 2482 CT + 6382 CXR  | 95.61%               | 2 s              |
| Mahmud et al. [13]      | 2020 | customized CNN (CovXNet) | 6161 CXR            | 97.4%                | N/A              |
| Ouchicha et al. [14]    | 2020 | customized CNN (CVDNet)  | 2905 CXR            | 96.7%                | N/A              |
| Wang et al. [15]        | 2020 | 3D-ResNet                | 4697 CXR            | 93.3%                | N/A              |
| Choudhury et al.[31]    | 2020 | DenseNet201              | 3487 CXR            | 97.94%               | N/A              |
| Ren et al. [32]         | 2020 | CNN + Bayesian Network   | 35,389 CXR          | 87%                  | N/A              |
| Arias et al. [33]       | 2020 | CNN                      | 79,500 CXR          | 91.5%                | N/A              |
| Sakib et al. [34]       | 2020 | customized CNN (DL-CRC)  | 5367 CXR            | 94%                  | N/A              |
| Ozturk et al. [35]      | 2020 | YOLO via DarkNet         | 1000 CXR            | 87–98%               | < 1 sec          |
| Alhudjaif et al. [10]   | 2021 | DenseNet-201             | 1218 CXR            | 94.96%               | "within seconds" |
| Nikolaou et al. [36]    | 2021 | EfficientNet models      | 15,153 CXR          | 95%                  | N/A              |
| Das et al. [37]         | 2021 | CNN + transfer learning  | 1004 CXR            | 95%                  | "few seconds"    |
| Munusamy et al. [38]    | 2021 | FractalCovNet            | 473 CT + 11,934 CXR | 92–98%               | N/A              |
| Joshi et al. [39]       | 2021 | DarkNet-53               | 6884 CXR            | 97.11%               | 0.137 s          |
| Singh and Tripathi [40] | 2022 | Quaternion CNN           | 5856 CXR            | 93.75%               | N/A              |
| Dash and Mohapatra [41] | 2022 | CNN + transfer learning  | 1272 CXR            | 97.12%               | N/A              |
| Gour and Jain [42]      | 2022 | VGG-19, Xception         | 4645 CT + 3040 CXR  | 97.5%                | 0.029–3.66 s     |
| Proposed method         | 2022 | CNN + modified dropout   | 5856 CXR            | 97.4%                | 0.122 s          |

#### Transparent neural networks

- EU regulations: all machine-made decisions affecting human lives must be accompanied by explanation
- Explainable artificial intelligence
  - E.g. decision trees, random forest, KNN are explainable
  - Conventional neural networks are not explainable
- Explainable solutions are needed for complex decisions
- Collaborator team led by O. Csiszár has a potential solution under development (Csiszár et al, Knowl. Based Syst 2020, 2021)
- Future work: provide explainable solutions for medical diagnosis problems
- Main challenge: diagnosis needs complex decisions; current transparent model needs to be extended and possibly assisted by clustering methods that decompose complex problems into several, less complex ones



## **THANKS FOR** YOUR ATTENTION AND ANY **QUESTIONS**?