

Artificial intelligence-powered multimodality medical imaging: Challenges and opportunities

Habib Zaidi^{1,2,3,4}

Óbuda University, Budapest, 12 Sepember 2023

¹Geneva University Hospital, Geneva, Switzerland
 ²University of Groningen, Groningen, Nethelands
 ³University of Southern Denmark, Odense, Denmark
 ⁴Óbuda University. Budapest, Hungary
 Email: habib.zaidi@hcuge.ch
 Web: http://www.pinlab.ch

FACULTÉ DE MÉDECINE

<u>Outline</u>

- Advances in multimodality medical imaging
- Why artificial intelligence in multimodality imaging?
- Promise of AI in multimodality medical imaging
- ➡ PET instrumentation (event positioning & TOF)
- Low-dose CT/PET/SPECT imaging (chest/brain/WB/cardiac)
- Medical image segmentation (CT and PET)
- → Cross-modality image conversion (MRI \rightarrow CT)
- Quantification (attenuation & scatter correction in PET)
- Computational modeling and radiation dosimetry
- Prognostic modeling and outcome prediction
- Summary and future perspectives

From 2-D to 5-D multimodality imaging

2-D projections

Navigating beyond the 5th dimension ... Beyond pretty images ...

4-D PET

5-D PET/CT

Zaidi H. Navigating beyond the 6th dimension: A challenge in the era of multi-parametric molecular imaging (2009) EJNMMI 36: 1025-28

Molecular Imaging: sensitivity vs resolution

Hôpitaux

Principles of x-ray CT scanning

 sinogram	
 X/A	
 XXX	

Image reconstruction from projections

Analytic $f(x,y) = \int_{0}^{\pi} d\phi \left[\int_{-\infty}^{+\infty} dv_{s} |v_{s}| e^{2\pi i v_{s} s} P_{\phi}(v_{s}) \right]$

Multiparametric brain imaging using MRI

Magnetic Resonance Imaging

Major ingredients:

- ✓ Nuclear spin
- ✓ Strong external magnetic field
- Resonance (typically radio-frequency range)
- ✓ Switchable field gradients to encode position

Hôpitaux Universitaires

enève

MRI is muliparametric by nature – many different contrasts (sequences) possible

Molecular imaging timeline

Principles of PET/CT

Spiral CT

PET/CT

Commercial whole-body PET/MRI systems

GEMINI TF PET/MR

uPMR 790 HD TOF PET/MR

Clinical applications of PET/MRI

Artificial intelligence in medical physics

11

IN THIS BUILDING DURING THE SUMMER OF 1956

JOHN MCCARTHY (DARTMOUTH COLLEGE), MARVIN L. MINSKY (MIT) NATHANIEL ROCHESTER (IBM), AND CLAUDE SHANNON (BELL LABORATORIES) CONDUCTED

THE DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

FIRST USE OF THE TERM "ARTIFICIAL INTELLIGENCE" FOUNDING OF ARTIFICIAL INTELLIGENCE AS A RESEARCH DISCIPLINE

"To proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it."

> IN COMMEMORATION OF THE PROJECT'S 50th ANNIVERSARY JULY 13, 2006

Joh

Lear

nac

re

Biology

Why do we need AI in medical imaging?

• We are likely to see that many operator-dependent tasks will become increasingly automated to address staff shortages and the increasing demand for medical imaging examinations in an ageing population.

UK consultant radiologist supply and demand

Closing the gap

- Increasingly automated diagnosis of routine cases supported by clinical support systems
- Radiologists focus on difficult cases
- Radiologists not only provide reports but are involved in clinical decision-making or provide clinical decisions

Clinical Radioiogy, UK workforce census 2019 report

AI/ML/CAD devices by FDA's product areas

Hôpitaux Universitaires

Genève

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices

Artificial intelligence impacting radiology

Image Registration

Image Reconstruction

Hôpitaux Universitaires Genève

AI in Radiology for Automation and Improvement of Framework

Learning

Harmonization

Report Generation

Personalized Dose Estimation

Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region

Hossein Arabi Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland

Jason A. Dowling CSIRO Australian e-Health Research Centre, Herston, QLD, Australia

Ninon Burgos

Inria Paris, Aramis Project-Team, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225 Sorbonne Université, Paris F-75013, France

Xiao Han Elekta Inc., Maryland Heights, MO 63043, USA

Peter B. Greer Calvary Mater Newcastle Hospital, Waratah, NSW, Australia University of Newcastle, Callaghan, NSW, Australia

Nikolaos Koutsouvelis

Division of Radiation Oncology, Geneva University Hospital, Geneva CH-1211, Switzerland

Habib Zaidia)

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland Geneva University Neurocenter University of Geneva, Geneva 1205, Switzerland Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, the Netherlands Department of Nuclear Medicine, University of Southern Denmark, Odense DK-500, Denmark

(Received 7 June 2018; revised 29 July 2018; accepted for publication 6 September 2018; published xx xxxx xxxx)

Purpose: Magnetic resonance imaging (MRI)-guided radiation therapy (RT) treatment planning is limited by the fact that the electron density distribution required for dose calculation is not readily provided by MR imaging. We compare a selection of novel synthetic CT generation algorithms recently reported in the literature, including segmentation-based, atlas-based and machine learning techniques, using the same cohort of patients and quantitative evaluation metrics.

Methods: Six MRI-guided synthetic CT generation algorithms were evaluated: one segmentation technique into a single tissue class (water-only), four atlas-based techniques, namely, median value of atlas images (ALMedian)¹, atlas-based local weighted voting (ALWV)², bone enhanced atlas-based local weighted voting (ALWV-Bone)³, iterative atlas-based local weighted voting (ALWV-Iter)⁴, and a machine learning technique using deep convolution neural network (DCNN)⁵.

Results: Organ auto-contouring from MR images was evaluated for bladder, rectum, bones, and body boundary. Overall, DCNN exhibited higher segmentation accuracy resulting in Dice indices (DSC) of 0.93 ± 0.17 , 0.90 ± 0.04 , and 0.93 ± 0.02 for bladder, rectum, and bones, respectively. On the other hand, ALMedian showed the lowest accuracy with DSC of 0.82 ± 0.20 , 0.81 ± 0.08 , and 0.88 ± 0.04 , respectively. DCNN reached the best performance in terms of accurate derivation

Arabi et al. Med Phys (2018)

Deep learning-guided estimation of DOI

lôpitaux

taires

Article

applied

Depth of Interaction Estimation in a Preclinical PET Scanner Equipped with Monolithic Crystals Coupled to SiPMs Using a Deep Neural Network

Amirhossein Sanaat¹ and Habib Zaidi ^{1,2,3,4,*}

- ¹ Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland; amirhossein.sanaat@etu.unige.ch
- ² Geneva University Neurocenter, Geneva University, 1205 Geneva, Switzerland
- ³ Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- ⁴ Department of Nuclear Medicine, University of Southern Denmark, DK-500 Odense, Denmark
- * Correspondence: habib.zaidi@hcuge.ch; Tel.: +41-22-372-7258; Fax: +41-22-372-7169

Received: 6 June 2020; Accepted: 8 July 2020; Published: 10 July 2020

Sanaat and Zaidi (2020) Appl Sci

Hôpitaux Universitaires Genève

Deep learning-guided estimation of DOI

511 keV

Pixelated crystals

Monolithic crystal

3D positioning in a monolithic crystal using deep learning

PET scanner with Monolithic crystal monolithic crystal

SIPM Heat map

Multi layer perception

Sanaat and Zaidi (2020) Appl Sci

Deep learning-guided estimation of DOI

Sanaat and Zaidi (2020) Appl Sci

Received: 11 August 2022 Acce

Accepted: 18 August 2022

DOI: 10.1002/hbm.26068

RESEARCH ARTICLE

WILEY

Deep-TOF-PET: Deep learning-guided generation of time-offlight from non-TOF brain PET images in the image and projection domains

Amirhossein Sanaat¹ | Azadeh Akhavanalaf¹ | Isaac Shiri¹ | Yazdan Salimi¹ | Hossein Arabi¹ | Habib Zaidi^{1,2,3,4} D

Sanaat et al. (2022) Hum Brain Mapping

Generation of TOF-PET from non-TOF-PET

Hôpitaux Universitaires

Genève

Sanaat et al. (2022) Hum Brain Mapping

Generation of TOF-PET from non TOF-PET

Hôpitaux

Sanaat et al. (2022) Hum Brain Mapping

European Radiology (2021) 31:1420–1431 https://doi.org/10.1007/s00330-020-07225-6

COMPUTED TOMOGRAPHY

-lôpitaux Universitaires

ienève

Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network

Isaac Shiri¹ • Azadeh Akhavanallaf¹ • Amirhossein Sanaat¹ • Yazdan Salimi¹ • Dariush Askari² • Zahra Mansouri³ • Sajad P. Shayesteh⁴ • Mohammad Hasanian⁵ • Kiara Rezaei-Kalantari⁶ • Ali Salahshour⁷ • Saleh Sandoughdaran⁸ • Hamid Abdollahi⁹ • Hossein Arabi¹ • Habib Zaidi^{1,10,11,12}

Received: 9 June 2020 / Revised: 13 August 2020 / Accepted: 21 August 2020 / Published online: 3 September 2020 © The Author(s) 2020

Hôpitaux Universitaires

Genève

Acquisition parameters of full-dose and low-dose chest CT protocols of COVID-19 patients.

Parameters	Full-dose CT	Low-dose CT
CTDI _{vol} (mGy)	6.5 (4.16-10.5)	0.72 (0.66-1.03)
Voltage (kVp)	100-120	90
Tube current (mA)	100-150	20-45
Pitch factor	1.3-1.8	0.75

Full-dose

Low-dose

Predicted full-dose

Full-dose

Low-dose

Predicted full-dose

Hôpitaux Universitaires

Genève

Hôpitaux Universitaires

Genève

DL-based segmentation of COVID-19 lesions

 Received: 10 June 2021
 Revised: 18 September 2021
 Accepted: 17 October 2021

 DOI: 10.1002/ima.22672
 WILEY

COLI-Net: Deep learning-assisted fully automated COVID-19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images

Isaac Shiri¹ | Hossein Arabi¹ | Yazdan Salimi¹ | Amirhossein Sanaat¹ | Azadeh Akhavanallaf¹ | Ghasem Hajianfar² | Dariush Askari³ | Shakiba Moradi⁴ | Zahra Mansouri¹ | Masoumeh Pakbin⁵ | Saleh Sandoughdaran⁶ | Hamid Abdollahi⁷ | Amir Reza Radmard⁸ | Kiara Rezaei-Kalantari² | Mostafa Ghelich Oghli^{4,9} | Habib Zaidi^{1,10,11,12}

DL-based segmentation of CO

Clinical routine

Labor intens Time-consur

POP-UP WORLD TOUR ONLINE | ON DEMAND

> Isaac Shiri (Geneva/CH)

is hereby awarded:

ECR 2021 – Best Research Presentation Abstract

within the topic Imaging Informatics & Artificial Intelligence with the presentation:

Fully automatic COVID-19 lung and pneumonia lesion segmentation from CT images (15797)
 I. Shiri1, H. Arabi1, Y. Salimi1, A. Sanaat1, A. Akhavanalaf1, G. Hajianfar2, D. Askari2, K. R. Kalantari2, H. Zaidi1; 1Geneva/CH, 2Tehran/IR

at

ECR 2021 March 3 - 7, 2021 Online

Prof.Dr. Michael H. Fuchsjäger ESR President

High variability and comp

Shiri et al. (2021) ECR'2021 Shiri et al. (2022) Int J Imaging Syst Technol

DL-based segmentation of COVID-19 lesions

Lung Segmentation

Lesion Segmentation

Fully Automated Detection and Quantification

Pathogens

Hôpitaux Universitaires

Genève

- ✓ USA
 ✓ China
 ✓ Russia
 ✓ Italy
- ✓ Iran

Radiologist Segmentation

AI Segmentation

Lung Manual

Lesion Manual

Lung Predicted

Lesion Predicted

Shiri et al. (2022) Int J Imaging Syst Technol

DL-based segmentation of COVID-19 lesions

Radiologist Segmentation

AI Segmentation

Hôpitaux Universitaires

Genève

Shiri et al. (2022) Int J Imaging Syst Technol

Computational pregnant female phantoms

25w-gestation

30w-gestation

Thorax-abdo

Non-human primate

Hôpitaux Universitaires

Genève

Xie and Zaidi Eur J Nucl Med Mol Imaging (2016)

Xie et al. (2019) *Med* Phys

Xie et al. (2020) Med Phys

Automated generation of anatomical models

European Radiology (2019) 29:6805-6815 https://doi.org/10.1007/s00330-019-06296-4

PHYSICS

Hôpitaux

Estimation of the radiation dose in pregnancy: an automated patient-specific model using convolutional neural networks

Tianwu Xie¹ • Habib Zaidi^{1,2,3,4} 💿

Received: 23 April 2019 / Revised: 16 May 2019 / Accepted: 29 May 2019 / Published online: 21 June 2019 © European Society of Radiology 2019

Xie and Zaidi (2019) Eur Radiol

Automated generation of anatomical models Genève

Hôpitaux

Xie and Zaidi (2019) Eur Radiol

Automated generation of anatomical models

Manual segmentation

Automatic segmentation

Manual segmentation

Automatic segmentation

Hôpitaux Universitaires Genève

Xie and Zaidi (2019) *Eur Radiol*

European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-020-05167-1

ORIGINAL ARTICLE

Hôpitaux

Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging

Amirhossein Sanaat¹ · Isaac Shiri¹ · Hossein Arabi¹ · Ismini Mainta¹ · René Nkoulou¹ · Habib Zaidi^{1,2,3,4}

Received: 5 October 2020 / Accepted: 15 December 2020 © The Author(s) 2021

Sanaat et al. (2021) Eur J Nucl Med Mol Imaging

Conv: Convolution, LReLU: Leaky ReLU,

Sanaat et al. (2021) Eur J Nucl Med Mol Imaging

Hôpitaux Universitaires

Genève

(3 min/bed) Sanaat et al. (2021) *Eur J Nucl Med Mol Imaging*

0.7 mm/s

5 mm/s (25 sec/bed)

Zone 1 (Brain)

Zone 2 (Neck+Trunk)

Hôpitaux

1 = uninterpretable

2 = poor

3 = adequate

4 = good

5 = excellent

Sanaat et al. (2021) Eur J Nucl Med Mol Imaging

Hôpitaux

Sanaat et al. (2021) Eur J Nucl Med Mol Imaging

Hôpitaux Universitaires

Genève

Sanaat et al. (2021) Eur J Nucl Med Mol Imaging

CT-based attenuation correction (Reference)

Hôpitaux

Arabi et al (2019) Eur J Nucl Med Mol Imaging

MRI-guided AC in PET/MRI using deep learning

European Journal of Nuclear Medicine and Molecular Imaging (2019) 46:2746–2759 https://doi.org/10.1007/s00259-019-04380-x

ORIGINAL ARTICLE

Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI

Hossein Arabi¹ · Guodong Zeng² · Guoyan Zheng^{2,3} · Habib Zaidi^{1,4,5,6}

Received: 5 February 2019 / Accepted: 28 May 2019 / Published online: 1 July 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Hôpitaux Universitaires

Genève

Deep learning for MRI-guided AC in PET/MRI

Proposed deep convolutional neural network

Adversarial semantic structure learning (DL-AdvSS)

Hôpitaux Universitaires

Genève

- Two generative adversarial cores for CT synthesis (SynGAN) and semantic structure extraction (SegGAN)
- L2-norm and cross-entropy loss functions
- SynGAN core contains 22 layers whereas SegGAN core 16 layers
- In total, DL-AdvSS involves 54,408,932 trainable parameters

Arabi et al (2019) Eur J Nucl Med Mol Imaging

Deep learning for MRI-guided AC in PET/MRI

Hôpitaux

Universitaires Genève

Arabi et al (2019) Eur J Nucl Med Mol Imaging

Joint attenuation & scatter correction in PET

European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-020-04852-5

ORIGINAL ARTICLE

Hôpitaux

Deep-JASC: joint attenuation and scatter correction in whole-body ¹⁸F-FDG PET using a deep residual network

Isaac Shiri¹ • Hossein Arabi¹ • Parham Geramifar² • Ghasem Hajianfar³ • Pardis Ghafarian^{4,5} • Arman Rahmim^{6,7} • Mohammad Reza Ay^{8,9} • Habib Zaidi^{1,10,11,12}

Received: 7 November 2019 / Accepted: 1 May 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Shiri et al. (2020) Eur J Nucl Med Mol Imaging

Deep-JSAC: Implementation issues

Shiri et al. (2020) Eur J Nucl Med Mol Imaging

Deep learning compensates motion artifacts

Difference images: PET-DL – PET-CTAC

Shiri et al. (2020) Eur J Nucl Med Mol Imaging

AI-based artifact disentanglement

- Detectability
- Diagnostic confidence
- Quantification $SUV_{mean} = 3.7/2.2$ in PET-QA-NET/CT-ASC

Shiri et al. (2023) Clin Nucl Med

Halo Artifact

AI-based artifact disentanglement

European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-023-06418-7

ORIGINAL ARTICLE

lôpitaux

ersitaires

Differential privacy preserved federated transfer learning for multi-institutional ⁶⁸Ga-PET image artefact detection and disentanglement

Isaac Shiri^{1,2} · Yazdan Salimi¹ · Mehdi Maghsudi³ · Elnaz Jenabi⁴ · Sara Harsini⁵ · Behrooz Razeghi⁶ · Shayan Mostafaei^{7,8} · Ghasem Hajianfar¹ · Amirhossein Sanaat¹ · Esmail Jafari⁹ · Rezvan Samimi¹⁰ · Maziar Khateri¹¹ · Peyman Sheikhzadeh¹² · Parham Geramifar⁴ · Habibollah Dadgar¹³ · Ahmad Bitrafan Rajabi^{3,14} · Majid Assadi⁹ · François Bénard^{5,15} · Alireza Vafaei Sadr^{16,17} · Slava Voloshynovskiy⁶ · Ismini Mainta¹ · Carlos Uribe^{15,18,19} · Arman Rahmim^{15,19,20} · Habib Zaidi^{1,21,22,23}

Shiri et al. Eur J Nucl Med Mol Imaging (2023)

Hôpitaux Universitaires DPFL for PET/CT image artifact correction Genève **Non-ASC CT-ASC FTL-ASC** PET-QA-NET - CT-ASC SUV 68Ga-PSMA 0.5 0 Repeated scan -0.5 -1

Shiri et al. Eur J Nucl Med Mol Imaging (2023)

Deep learning-guided internal dosimetry

European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-020-05013-4

ORIGINAL ARTICLE

Whole-body voxel-based internal dosimetry using deep learning

Azadeh Akhavanallaf¹ • Iscaac Shiri¹ • Hossein Arabi¹ • Habib Zaidi^{1,2,3,4}

Received: 27 May 2020 / Accepted: 23 August 2020 © The Author(s) 2020

Akhavanallaf et al. (2020) Eur J Nucl Med Mol Imaging

Voxel-based internal dosimetry (MIRD)

Bolch et al. J Nucl Med (1999)

Deep learning-guided internal dosimetry

Hôpitaux Universitaires

Genève

Akhavanallaf et al. (2020) Eur J Nucl Med Mol Imaging

Deep learning-guided internal dosimetry

Hôpitaux Universitaires

Genève

Akhavanallaf et al. (2020) Eur J Nucl Med Mol Imaging

Federated learning in medical imaging

	Advantages	Disadvantages
СВ	Local control, utilization of centre-specific data and expertise	Generalizability, limited access to large datasets, infrastructure

Federated learning for PET AC/segmentation

ORIGINAL ARTICLE

Decentralized Distributed Multi-institutional PET Image Segmentation Using a Federated Deep Learning Framework

Isaac Shiri, MSc, * Alireza Vafaei Sadr, MSc, †‡ Mehdi Amini, MSc, * Yazdan Salimi, MSc, * Amirhossein Sanaat, MSc, * Azadeh Akhavanallaf, MSc, * Behrooz Razeghi, PhD, § Sohrab Ferdowsi, PhD, // Abdollah Saberi, MSc, * Hossein Arabi, PhD, * Minerva Becker, MD, ¶ Slava Voloshynovskiy, PhD, § Deniz Gündüz, PhD, ** Arman Rahmim, PhD, ††‡‡ and Habib Zaidi, PhD*§§////¶¶ European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-022-06053-8

ORIGINAL ARTICLE

Hôpitaux Universitaires

Genève

Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning

Isaac Shiri¹ · Alireza Vafaei Sadr^{2,3} · Azadeh Akhavan¹ · Yazdan Salimi¹ · Amirhossein Sanaat¹ · Mehdi Amini¹ · Behrooz Razeghi⁴ · Abdollah Saberi¹ · Hossein Arabi¹ · Sohrab Ferdowsi⁵ · Slava Voloshynovskiy⁴ · Deniz Gündüz⁶ · Arman Rahmim^{7,8} · Habib Zaidi^{1,9,10,11}

Received: 13 August 2022 / Accepted: 18 November 2022 © The Author(s) 2022

Shiri et al. (2023) Eur J Nucl Med Mol Imaging

Shiri et al. (2022) Clin Nucl Med

- Imaging biomarkers are a major component of Big Data driven medical knowledge and decision making
- Nuclear medicine physicians/Radiologists/Medical physicists who use Al and deep learning will replace those who don't ...
- Al/deep learning are producing challenges in terms of validation/adoption in clinical setting, but also plenty of research opportunities.
- Is there a future for AI/deep learning in medical imaging? YES
- If artificial intelligence is possible, so is artificial stupidity
- Wide and specific participation by industry and research communities, planning for long term sustainability.

"Machine learning works very well, and we don't know why it works so well. I consider that a challenge for mathematicians is to understand it better. I believe if something works, there is a reason. We have to find the reason"

Prof. Ingrid Daubechies, Duke University

On the horizon ...

The Wave...

... of the Future...

"Prediction is very difficult, especially if it is about the future" Niels Bohr (1885–1962)

Distinguished professor at Óbuda University

Hôpitaux Universitaires Genève

Potential collaborations (themes)

- High performance computing (Monte Carlo simulations, algorithmic developments, optimization, ...).
- Advanced signal & medical image analysis and processing
- Biomedical imaging instrumentation
- Novel neural network architectures and applications
- Applications of artificial intelligence in healthcare (other than medical imaging, e.g. radiation therapy, modeling, ...)
- Clinical diagnosis, prognostic modeling, outcome prediction, …

• Any research requiring expertise in imaging, AI, modeling, computing...

This work was supported by the Swiss national Science Foundation (grant 320030_176052), the Swiss Cancer Research Foundation (grant KFS-3855-02-2016), Eurostars (grants ILLUMINUS E!12326 and Provision E!114021), EEC/H2020 grant NFRP-945196 SINFONIA, Qatar National Research Fund (grant NPRP10-0126-170263) and Fondation privée des HUG (grant RC-06-01).

European

Commission

krebsforschung schweiz recherche suisse contre le cancer ricerca svizzera contro il cancro swiss cancer research

orivée des

European Workshop on Visual Information Processing

EUVIP 2024 Geneva, 8-11 Sep 2023

Main topics : visual information processing, analysis/interpretation and representation/coding; Applications: Multimedia, Medical imaging, Augmented and virtual reality, Biometrics, forensics, trust/security

Hôpitaux Universitaires

Genève

Geneva University Hospital

Shank you!

"Scientists are very happy people because their job is also their hobby"

Prof. Abdus Salem 1979 Nobel Laureate - Physics