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Abstract: This paper presents a case study how to apply the recently proposed
TP model transformation technique, that has been introduced for nonlinear state-
feedback control design, to nonlinear observer design. The study is conducted
through an example. This example treats the question of observer design to the pro-
totypical aeroelastic wing section with structural nonlinearity. This type of model
has been traditionally used for the theoretical as well as experimental analysis of
two- dimensional aeroelastic behavior. The model investigated in the paper de-
scribes the nonlinear plunge and pitch motion of a wing, and exhibits complex non-
linear behavior. In preliminary works this prototypical aeroelastic wing section was
stabilized by a state-feedback controller designed via TP model transformation and
linear matrix inequalities. Numerical simulations are used to provide empirical val-
idation of the resulting observer.

1 Introduction

The main goal of the paper is to study how to apply the TP (Tensor Product) model
transformation to observer design. The motivation of this goal is that the TP model
transformation was proposed under the Parallel Distributed Compensation (PDC)
design framework [1] for nonlinear state feedback controller design [2, 3]. The TP
model transformation is capable of transforming a given time varying (parameter de-
pendent, where the parameters may include state variables) linear state-space model
into time varying convex combination of finite number of linear time invariant mod-
els. The resulting linear time invariant models can then be readily substituted into
Linear Matrix Inequalities (LMI), available under the PDC design framework, to
determine a time varying (parameter dependent, where the parameters may include
state variables) nonlinear controller according to given control specifications. This
paper studies how to apply the result of the TP model transformation to observer
design under the PDC design framework similarly to the controller design.



2 Nomenclature

This section is devoted to introduce the notations being used in this paper:{a,b, . . .}:
scalar values,{a,b, . . .}: vectors,{A,B, . . .}: matrices,{A ,B, . . .}: tensors.
RI1×I2×···×IN : vector space of real valued(I1× I2×·· ·× IN)-tensors. Subscript

defines lower order: for example, an element of matrixA at row-column number
i, j is symbolized as(A)i, j = ai, j . Systematically, thei-th column vector ofA is
denoted asai , i.e. A =

[
a1 a2 · · ·]. ¦i, j,n, . . .: are indices.¦I ,J,N, . . .: index upper

bound: for example:i = 1..I , j = 1..J, n= 1..N or in = 1..In. A(n): n-mode matrix of
tensorA ∈RI1×I2×···×IN . A×n U: n-mode matrix-tensor product.A⊗nUn: multiple
product asA×1 U1×2 U2×3 ..×N UN. Detailed discussion of tensor notations and
operations is given in [7].

3 Basic concepts

The detailed description of the TP model transformation and PDC design framework
is beyond the scope of this paper and can be found in [1, 2, 3, 4]. In the followings a
few concepts are presented being used in this paper, for more details see [1, 2, 3, 4].

3.1 Parameter-varying state-space model

Consider parameter-varying state-space model:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t) (1)

y(t) = C(p(t))x(t)+D(p(t))u(t),

with inputu(t), outputy(t) and state vectorx(t). The system matrix

S(p(t)) =
(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ RO×I (2)

is a parameter-varying object, wherep(t) ∈ Ω is time varyingN−dimensional pa-
rameter vector, whereΩ = [a1,b1]× [a2,b2]× ..× [aN,bN]⊂ RN is a closed hyper-
cube.p(t) can also include some (or all) elements ofx(t).

3.2 Convex state-space TP model

Equ. (2) can be approximated for any parameterp(t) as a convex combination of
theR number of LTI system matricesSr , r = 1..R. MatricesSr are also termed as
vertex system matrices. Therefore, one can define weighting functionswr(p(t)) ∈
[0,1] ⊂ R such that matrixS(p(t)) belongs to the convex hull ofSr asS(p(t)) =
co{S1,S2, ..,SR}w(p(t)), where vectorw(p(t)) contains the weighting functionswr(p(t))
of the convex combination. The control design methodology, to be applied in this



paper, uses univariate weighting functions. Thus, the explicit form of the convex
combination in terms of tensor product becomes:

(
ẋ(t)
y(t)

)
≈ (3)

(
I1

∑
i1=1

I2

∑
i2=1

..
IN

∑
iN=1

N

∏
n=1

wn,in(pn(t))Si1,i2,..,iN

)(
x(t)
u(t)

)
.

(3) is termed as TP model in this paper. Functionwn, j(pn(t)) ∈ [0,1] is the j-th
univariate weighting function defined on then-th dimension ofΩ, andpn(t) is the
n-th element of vectorp(t). In (n=1,...,N) is the number of univariate weighting
functions used in then-th dimension of the parameter vectorp(t). The multiple
index (i1, i2, ..., iN) refers to the LTI system corresponding to thein−th weighting
function in then-th dimension. Hence, the number of LTI vertex systemsSi1,i2,..,iN
is obviouslyR= ∏n In. One can rewrite (3) in the concise TP form as:

(
sx(t)
y(t)

)
≈S

N⊗
n=1

wn(pn(t))
(

x(t)
u(t)

)
, (4)

that is

S(p(t))≈
ε

S
N⊗

n=1
wn(pn(t)).

Here,ε represents the approximation error, and row vectorwn(pn) ∈ RIn contains
the weighting functionswn,in(pn), the N + 2 -dimensional coefficient tensorS∈
RI1×I2×···×IN×O×I is constructed from the LTI vertex system matricesSi1,i2,...,iN ∈
RO×I . The firstN dimensions ofSare assigned to the dimensions ofΩ. The convex
combination of the LTI vertex systems is ensured by the conditions:

Definition 1 The TP model (4) is convex if:

∀n, i, pn(t) : wn,i(pn(t)) ∈ [0,1]; (5)

∀n, pn(t) :
In

∑
i=1

wn,i(pn(t)) = 1. (6)

This simply means thatS(p(t)) is within the convex hull of LTI vertex systems
Si1,i2,..,iN for anyp(t) ∈Ω.

4 Model of the prototypical aeroelastic wing section

In the past few years various studies of aeroelastic systems have emerged. [10]
presents a detailed background and refers to a number of papers dealing with the



modelling and control of aeroelastic systems. The following provides a brief sum-
mary of this background. [11] and [12] proposed non-linear feedback control method-
ologies for a class of non-linear structural effects of the wing section [13]. Papers
[11, 14, 10] develop a controller, capable of ensuring local asymptotic stability, via
partial feedback linearization. It has been shown that by applying two control sur-
faces global stabilization can be achieved. For instance, global feedback lineariza-
tion technique were introduced for two control actuators in the work of [10]. TP
model transformation based control design was introduced in [4, 5, 6]. This con-
trol design ensures asymptotic stability with one control surface and is capable of
involving various control specification beyond stability.

4.1 Equations of Motion

In this paper, we consider the problem of flutter suppression for the prototypical
aeroelastic wing section as shown in Figure 1. The aerofoil is constrained to have
two degrees of freedom, the plungeh and pitchα. The equations of motion of the
system have been derived in many references (for example, see [15], and [16]), and
can be written as

h
k

c=2*b

M

L
c.g.

U
x

kh

b

a*b midchord
elastic axis

h

Deflected position

Equilibrium position

Figure 1: Aeroelastic model
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Then we have:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t) = S(p(t))
(

x(t)
u(t)

)
, (7)

where

A(p(t)) =




x3

x4

−k1x1− (k2U2 + p(x2))x2−c1x3−c2x4

−k3x1− (k4U2 +q(x2))x2−c3x3−c4x4




B(p(t)) =




0
0

g3U2

g4U2


 ,

wherep(t) ∈ RN=2 contains valuesx2 andU . The parameters and variables are
given in the Appendix. One should note that, the equations of motion are also
dependent upon the elastic axis locationa. In this paper we assume the quasi-
steady aerodynamic force and moment accurate for the class of low velocities, see
work [15]. The equations of motion (7) exhibit limit cycle oscillation, as well as
other non-linear response regimes including chaotic response [18, 19, 21]. Papers
[13, 21] have shown the relations between limit cycle oscillation, magnitudes and
initial conditions or flow velocities. The system parameters to be used in this paper
are given in the Appendix and are obtained from experimental models described in
full detail in works [10, 21].

5 Observer design

The recently proposed very powerful numerical methods (and associated theory)
for convex optimizationinvolving Linear Matrix Inequalities (LMI) help us with the
analysis and the design issues of dynamic systems models in acceptable computa-
tional time [22]. One direction of these analysis and design methods is based on
LMI’s under the PDC design framework [1]. In this paper we apply the TP model
transformation in combination with the PDC based observer design technique to de-
rive viable observer methodologies for the prototypical aeroelastic wing section de-
fined in the previous section. The key idea of the proposed design method is that the
TP model transformation is utilized to represent the model (7) in convex TP model
form with specific characteristics, whereupon PDC controller design techniques can
immediately be executed. The following sections introduces the observer design:

5.1 TP model form of the prototypical aeroelastic wing section

5.1.1 TP model transformation

The goal of the TP model transformation is to transform a given state-space model
(1) into convex TP model [2, 3, 4], in which the LTI systems form a tight convex



hull. Namely, the TP model transformation results in (4) with conditions (5) and
(6), and searches the LTI systems as a points of a tight convex hull ofS(p(t)).

The detailed description of the TP model transformation is discussed in [2, 3,
4]. In the followings only the main steps are briefly presented. The TP model
transformation is a numerical method and has three key steps. The first step is the
discreatisation of the givenS(p(t)) via the sampling ofS(p(t)) over a huge number
of points p ∈ Ω, whereΩ is the transformation space. The sampling points are
defined by a dense hyper rectangular grid. In order to loose minimal information
during the discretisation we apply as dense grid as possible. The second step extracts
the LTI vertex systems from the sampled systems. This step is specialized to find
the minimal number of LTI vertex systems, as the vertex points of the tight convex
hull of the sampled systems. The third step constructs the TP model based on the
LTI vertex systems obtained in the second step. It defines the continuous weighting
functions to the LTI vertex systems.

5.2 Determination of the convex TP model form of the aeroelas-
tic model

We execute the TP model transformation on the model (7). First of all, according
to the three steps of the TP model transformation, let us define the transformation
spaceΩ. We are interested in the intervalU ∈ [14,25](m/s) and we presume that,
the intervalα ∈ [−0.1,0.1](rad) is sufficiently large enough. Therefore, let:Ω :
[14,25]× [−0.1,0.1] in the present example (note that these intervals can arbitrarily
be defined). Let the grid density be defined asM1×M2, M1 = 100andM2 = 100.
Step 2 of the TP model transformation yields 6 vertex LTI systems.

The third step results in weighting functionsw1,i(U) andw2, j(α).

6 Observer design to the prototypical aeroelastic wing
section

6.1 Method for observer design under PDC framework

In reality not all the state variables are readily available in most cases. Unavailable
state variables should be estimated in the case of state-feedback control strategy.
Under these circumstances, the question arises whether it is possible to determine
the state from the system response to some input over some period of time. Namely,
the observer is required to satisfy:

x(t)− x̂(t)→ 0 as t → ∞,

wherex̂(t) denotes the state vector estimated by the observer. This condition guar-
anties that the steady-state error betweenx(t) andx̂(t) converges to0. We use the
following observer structure:

ˆ̇x(t) = A(p(t))x̂(t)+B(p(t))u(t)+K(p(t))(y(t)− ŷ(t))



ŷ(t) = C(p(t))x̂(t),

That is in TP model form:

ˆ̇x(t) = A⊗
n

w(pn(t))x̂(t)+B⊗
n

wn(pn(t))u(t)+ (8)

+K ⊗
n

w(pn(t))(y(t)− ŷ(t))

ŷ(t) = C ⊗
n

w(pn(t))x̂(t).

At this point, we should emphasize that in our example the vectorp(t) does
not contain values form the estimated state-vectorx̂(t), sincep1(t) equalsU and
p2(t) equals the pitch angle (x2(t)). These variables are observable. We estimate
only state-valuesx3(t) and x4(t). Consequently, the goal in the present case, is
to determine gains in tensorK for (8). For this goal, the following LMI theorem
can be find in [1]. Before dealing with this LMI theorem, we introduce a simple
indexing technique, in order, to have direct link between the TP model form (4) and
the typical form of LMI formulations:

Method 1 (Index transformation)Let

Sr =
(

Ar Br

Cr Dr

)
= Si1,i2,..,iN ,

wherer = ordering(i1, i2, .., iN) (r = 1..R= ∏n In). The function "ordering" results
in the linear index equivalent of anN dimensional array’s indexi1, i2, .., iN, when the
size of the array isI1× I2× ..× IN. Let the weighting functions be defined according
to the sequence ofr:

wr(p(t)) = ∏
n

wn,in(pn(t)).

Theorem 1 (Globally and asymptotically stable observer )
In order to ensure

x(t)− x̂(t)→ 0 as t → ∞,

in the observer strategy (8), findP > 0 andNr satisfying the following LMI’s.

−AT
r P−PAr +CT

r NT
r +NrCr > 0 (9)

for all r and
−AT

r P−PAr −AT
s P−PAs+ (10)

+CT
r NT

s +NsCr +CT
s NT

r +NrCs > 0.

for r < s≤ R, except the pairs(r,s) such thatwr(p(t))ws(p(t)) = 0,∀p(t).



Since the above equations are LMI’s, with respect to variablesP andNr , we can
find a positive definite matrixP and matrixNr or determine that no such matrices
exist. This is a convex feasibility problem. Numerically, this problem can be solved
very efficiently by means of the most powerful tools available in the mathematical
programming literature e.g.MATLAB-LMI toolbox [22].

The observer gains can then be obtained as:

K r = P−1Nr . (11)

Finally, by the help ofr = ordering(i1, i2, .., iN) in Method 1 one can defineK i1,i2,..,iN
from K r obtained in (11) and store into tensorK of (8).

6.2 Observer design to the prototypical aeroelastic wing section

This section applies Theorem 1 to the TP model of the aeroelastic wing section. We
define matrixC for all r from:

y(t) = Cx(t),

that is in present case:

Cr =
(

1 0 0 0
0 1 0 0

)

The LMIs of Theorem 1, applied to the result of the TP model transformation,
are feasible. Thus, equ. (11) yields 6 observer feedbacks. In conclusion the state
valuesx3(t) andx4(t) are estimated by (10) as:

ˆ̇x(t) = A(p(t))x̂(t)+B(p(t))u(t)+
(

3

∑
i=1

2

∑
j=1

w1,i(U)w2, j(α)k i, j

)
(y(t)− ŷ(t)) ,

where

y(t) =
(

x1(t)
x2(t)

)
and ŷ(t) =

(
x̂1(t)
x̂2(t)

)
and p(t) =

(
U
α

)
,

(x1(t) = h, plunge, andx2(t) = α, pitch). In order to demonstrate the accuracy
of the observer, numerical experiments are presented in the next section.

6.3 Simulation results

We simulate the observer for initialsx(0) =
(
0.01 0.1 0.1 0.1

)T
and

x̂(0) =
(
0 0 0 0

)T
, for the open loop case. Figure 2 shows how the ob-

server is capable of converging to the unmeasurable state valuesx3(t) and x4(t)
(dashed line is estimated by the observer).
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Figure 2: State values ofx(t) (solid line) and the estimated values ofx̂(t)
(dashed line) for open loop response. (U = 20m/s, a = −0.4, initials: x(0) =(
0.01 0.1 0.1 0.1

)T
, x̂(0) =

(
0 0 0 0

)T
)



7 Conclusion

The paper presents how to use the TP model transformation method can be used for
observer design in uniform way for controller and observer design. The paper also
shows how to determine observer for the prototypical aeroelastic wing section.

Appendix

xα is the non-dimensional distance between elastic axis and the centre of mass;m is
the mass of the wing;Iα is the mass moment of inertia;b is semi-chord of the wing,
andcα andch respectively are the pitch and plunge structural damping coefficients,
andkh is the plunge structural spring constant.ρ is the air density,U is the free
stream velocity,clα andcmα respectively, are lift and moment coefficients per angle
of attack, andclβ andcmβ , respectively are lift and moment coefficients per control
surface deflection, anda is non-dimensional distance from the mid-chord to the
elastic axis.β is the control surface deflection.

Several classes of non-linear stiffness contributionskα(α) have been studied in
papers treating the open-loop dynamics of aeroelastic systems [17, 18, 19, 20]. In
this paper we use non-linear stiffness termkα(α) as obtained by curve-fitting on the
measured displacement-moment data for non-linear spring as [21]:

kα(α) = 2.82(1−22.1α+1315.5α2 +8580α3 +17289.7α4).

System parameters

b = 0.135m; span= 0.6m; kh = 2844.4N/m; ch = 27.43Ns/m; cα = 0.036Ns;
ρ = 1.225kg/m3; clα = 6.28; clβ = 3.358; cmα = (0.5+a)clα ; cmβ = −0.635; m=
12.387kg; xα =−0.3533−a; Iα = 0.065kgm2; cα = 0.036;

System variables

d = m(Iα−mx2
αb2); k1 = Iαkh

d ; k2 = Iαρbclα +mxαb3ρcmα
d ; k3 = −mxαbkh

d ;

k4 = −mxαb2ρclα−mρb2cmα
d ; p(α) = −mxαb

d kα(α); q(α) = m
d kα(α);

c1(U) =
(
Iα(ch +ρUbclα)+mxαρU3cmα

)
/d;

c2(U) =
(
IαρUb2clα(1

2−a)−mxαbcα +mxαρUb4cmα(1
2−a)

)
/d;

c3(U) =
(−mxαbch−mxαρUb2clα −mρUb2cmα

)
/d;

c4(U) =
(
mcα−mxαρUb3clα(1

2−a)−mρUb3cmα(1
2−a)

)
/d;

g3 = (−Iαρbclβ −mxαb3ρcmβ)/d; g4 = (mxαb2ρclβ +mρb2cmβ)/d;
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