
Model Identification by Bacterial Optimization1

Botzheim, J. * − Kóczy, L.T. *,**
*Department of Telecommunication and Media Informatics, Budapest University
of Technology and Economics, Budapest, Hungary

**Institute of Information Technology and Electrical Engineering, Széchenyi
István University, Győr, Hungary

Abstract: In the field of control systems it is common to use techniques based on model
adaptation to carry out control for plants for which mathematical analysis may be intricate.
Increasing interest in biologically inspired learning algorithms for control techniques such
as artificial neural networks and fuzzy systems is in progress. In this paper a recent kind of
evolutionary method called bacterial algorithm is introduced. This method can be used for
fuzzy rule extraction and optimization. Bacterial Programming is also proposed in this
paper. This approach is the combination of the bacterial algorithm and the genetic
programming techniques and can be applied for the optimization of the structure of B-
spline neural networks.

1 Introduction

There are several optimization methods inspired by processes in the nature. The
advantage of these algorithms is their ability to solve and quasi-optimize problems
with non-linear, high-dimensional, multi-modal, and discontinuous character. It
has been shown that evolutionary algorithms are efficient tools for solving
nonlinear, multiobjective and constrained optimizations. These algorithms have
the ability to explore large admissible spaces, without demanding the use of
derivatives of the objective functions, such as the gradient-based training methods.
Their principles are based on the search for a population of solutions, which
tuning is done using mechanisms similar to biological recombination. The original
Genetic Algorithm (GA), developed by Holland [5] which is based on the process
of evolution of biological organisms. Recently, approaches like Genetic
Programming (GP) [6] and Bacterial Algorithm (BA) [7] presented an alternative
to the former algorithms. GP uses the same operators as GA, though it requires an
expression tree for gene representation as a combination of functions. On the other

1 Research supported by the National Scientific Research Fund OTKA T034233 and

T034212, a Széchenyi University Research Grant 2004, and the National Research
and Development Project Grant 2/0015/2002

hand, operations of the bacterial evolutionary algorithm were inspired by the
microbial evolution phenomenon. Bacterial Programming (BP) [3] is also
introduced, which is a fusion between the principles of the BA and GP. In the
applications of fuzzy systems, one of the most important tasks is to find the
optimal rule base. The rules can be defined by a human expert or can be given a
priori by the linguistic description of the modelled system. If however neither is
available, the rule base has to be generated by other methods based on numerical
data. The design process of neural networks involves the topology determination
which is an extremely complex task, especially if dealing with real-world
problems. For both problems the bacterial optimization approach offers suitable
solution.

The paper is organised as follows. Section 2 describes the structure of the fuzzy
system applied. The bacterial algorithm for trapezoidal fuzzy systems is presented
in Section 3. In Section 4 the B-spline neural networks are shown. Section 5
introduces the Bacterial Programming applied to B-spline neural networks.

2 Fuzzy Systems

The theory of fuzzy logic was developed by Zadeh in the early 1960s. His theory
was essentially the rediscovering the multi-valued logic created by Lukasiewicz,
however, with going much further in some application related aspects. In 1973 he
pointed out that the new fuzzy concept could be excellently used for describing
very complex problems with a system of fuzzy relations represented by a fuzzy
rule base [8]. A fuzzy rule base contains fuzzy rules Ri:

Ri: IF (x1 is Ai1) AND (x2 is Ai2) AND ... AND (xn is Ain) THEN (y is Bi), (1)

where Aij and Bi are fuzzy sets, xj and y are fuzzy inputs and output. The meaning
of the structure of a rule is the following:

IF Premise THEN Conclusion, (2)

where the premise consists of antecedents linked by fuzzy AND operators. The
Centre of Gravity (COG) defuzzification method is used here because it is general
and easy to compute. This method calculates the crisp output by the sums of the
centre of gravities of the conclusions. Thus, a fuzzy inference system can compute
output y of an input vector x. The main purpose is to make the best solution
possible for each input vector, therefore the optimum rule base need to be found.

2.1 The Encoding Method

The class of membership function is restricted to trapezoidal, as it is general
enough and widely used. They are described by four parameters with the four
breakpoints of the trapezium. Moreover the membership functions are identified
by the two indices i and j. So, the membership function Aij(aij,bij,cij,dij) belongs to
the ith rule and the jth input variable. Bi(ai,bi,ci,di) is the output membership
function of the ith rule. The relative importance of the jth fuzzy variable in the ith
rule:

()















<≤
−

−
<≤

<<
−

−

=

otherwise,0

,

,1

,

ijjij
ijij

jij

ijjij

ijjij
ijij

ijj

jij

dxcif
cd
xd

cxbif

bxaif
ab
ax

xA , (3)

where aij≤bij≤cij≤dij must hold.

So the encoding method of a fuzzy system with two inputs and one output, see in
Fig. 1.

Fig. 1. Fuzzy rules encoded in a chromosome

For example, Rule 3 in Fig. 1 means:

IF x1 is A31(4.3,5.1,5.4,6.3) and x2 is A32(1.2,1.3,2.7,3.1) THEN
 y is B3(2.6,3.8,4.1,4.4) (4)

where Aij and Bi mean the trapezoidal membership function with the four
breakpoints [1].

3 Bacterial Algorithm

A recent kind of evolutionary method is called bacterial algorithm [1,2,7]. This
approach includes two operations inspired by the microbial evolution
phenomenon. The bacterial mutation operation optimizes the chromosome of a
single bacterium, while the gene transfer operation provides the transfer of
information between the bacteria in the population.

If we are applying the bacterial algorithm for the optimization of a fuzzy rule base,
then one bacterium (individual) corresponds to one fuzzy system. In the
evolutionary process, as the population evolves from generation to generation,
better and better bacteria (rule base) can be obtained. The steps of the algortihm
are described in this section.

3.1 Generating The Initial Population

First the initial (random) bacteria population is created. The population consists of
Nind chromosomes (bacteria). This means that all membership functions in the
chromosomes must be randomly initialized. The initial number of rules in one
chromosome is Nrule. So, Nind(k+1)Nrule membership functions are created, where k
is the number of input variables in the given problem and each membership
function has four parameters.

3.2 Bacterial Mutation

The bacterial mutation is applied to each chromosome one by one [1,7]. First,
Nclones copies (clones) of the rule base are generated. Then a certain part of the
chromosome is randomly selected and the parameters of this selected part are
randomly changed in each clone (mutation). Next all the clones and the original
bacterium are evaluated by an error criterion. The best individual transfers the
mutated part into the other individuals. This cycle is repeated for the remaining
parts, until all parts of the chromosome have been mutated and tested. At the end
the best rule base is kept and the remaining Nclones are discharged.

It is an important question how long is one part suffering mutation and what is the
degree of the mutation (expressed as the relative size in terms of the interval). This
approach allows both selecting more than one membership function and fine-
tuning. The number of mutated membership functions and the mutation degree are
external parameters of the bacterial mutation. If selecting more than one
membership function is allowed then the local minima in the optimization process
can be avoided.

3.3 Gene Transfer

The gene transfer operation allows the recombination of genetic information
between two bacteria [1,7].

1. First the population must be devided into two halves. The better bacteria are
called superior half, the other bacteria are called inferior half.

2. One bacterium is randomly chosen from the superior half, this will be the
source bacterium, and another is randomly chosen from the inferior half, this will
be the destination bacterium.

3. A “good” part from the source bacterium is chosen and this part can overwrite a
not-so-good part of the destination bacterium or simple be added. A good part can
be a fuzzy rule with a high degree of activation value [1].

4. Steps 1, 2, and 3 are repeated for Ninf times, where Ninf is the number of
“infections” per generation.

3.4 Stop Condition

If the population satisfies a stop condition or the maximum generation number
(Ngen) is reached then the algorithm ends, otherwise it returns to the bacterial
mutation step.

4 B-spline Neural Networks

Belonging to the class of networks termed grid or lattice-based associative
memories networks (AMN), B-spline Neural Networks are composed of three
layers which are, a normalized input space layer, a basis functions layer and a
linear weight layer. These will be described in the next subsections.

4.1 Normalized Input Layer

It is usually a grid on which the basis functions are defined. To define a grid in the
input space, we need to set the values of the vectors of knots, one for each input
axis. Each dimension has usually a different number of knots, generally placed at
different positions. The interior knots, for the ith axis, are , , 1, ,i j ij rλ = L , and they
are arranged in such a way that:

min max
,1 ,2 , ii i i i r ix xλ λ λ< ≤ ≤ ≤ <L , (5)

where min
ix and max

ix are the minimum and maximum values of the ith input,
respectively. The jth interval of the ith input is denoted as Ii,j and is defined as:

, 1 ,

,

, 1 ,

1, ,

1

i j i j i

i j

i j i j i

for j r
I

if j r

λ λ

λ λ

−

−

  = = 
  = +  

L
, (6)

This way, within the range of the ith input, there are ri+1 intervals (possibly empty

if the knots are coincident), which means that there are ()
1

1
n

i
i

p r
=

′ = +∏ n-

dimensional cells in the grid.

4.2 The Basis Function Layer

The output of the hidden layer is determined by a set of p basis functions defined
on the n-dimensional grid. The shape, size and distribution of the basis functions
are characteristics of the particular AMN employed, and the support of each basis
function is bounded. In B-splines neural networks, the order of the spline
implicitly sets the size of the basis functions support and its shape. The univariate
B-spline basis function of order k has a support, which is k intervals wide. Hence,
each input is assigned to k basis functions. The jth univariate basis function of
order k is denoted ()j

kN x , and it is defined by the following relationships:

1
1 1

1 1

() () ()j k jj j
k k

j j k j j k

x x
N x N x N x

λ λ
λ λ λ λ

− −
− −

− − − +

   − −
= +      − −   

j
k

1

1
()

0
jj if x I

N x
otherwise

∈
= 


,

(7)

To define multivariate basis functions, the tensor product of the univariate basis
functions is performed. Therefore, each multivariable basis function is formed
from the product of n univariate basis functions, one from each input axis, and
every possible combination of univariate basis function is taken:

() (),
1

i

n
j j

i i
i

N N
=

=∏k kx x , (8)

The number of basis functions of order ki defined on an axis with ri interior knots
is ri+ki. Therefore, the total number of basis functions for a multivariate B-spline

is . Because this number depends exponentially on the input

dimension, B-splines are only applicable for problems where the input dimension
is small (typically ≤).

(
1

n

i i
i

p r
=

= +∏)k

5

4.3 The Weight Layer

Since the output of an AMN is a linear combination of the outputs of the basis
functions, linear coefficients must be defined, usually termed adjustable weights.
As the mapping is linear, finding the weights is just a linear optimization problem.
The output is given by:

1

p
T

i i
i

y
=

= =∑a w a w , (9)

where (), 1, ,i
i N x i= =ka K p .

4.4 Sub-Modules

A way to overcome the “curse of dimensionality”, is to cover all inputs by a linear
sum of small sub-modules, each one with a lower input dimensionality, instead of
using only one model covering all the inputs. The output of such a network is:

() ()
1

un

u u
u

y S
=

= ∑x x , (10)

where (i iS x) denotes the ith sub-model, and ix is the set of input variables (i)

which compose sub-model i.

4.5 B-Spline Neural Networks Design

The design of a B-spline network involves normally the following design phases:

1. The determination of the number of its sub-modules;
2. For each sub-model, the set of its inputs;
3. The order of the splines (for B-Spline NNs) for each input;
4. The number of the interior knots for each input;
5. The location of the interior knots for each input;
6. The values of the linear output weights.

The former points constitute a very complex combinatorial problem. There are
different constructive algorithms to help on this task, such as the ASMOD
(Adaptive Spline Modelling of Observed Data) algorithm, the MARS (Multivariate
Adaptive Regression Splines) algorithm, the LOLIMOT algorithm and the genetic
programming technique [4]. This paper proposes a new method for B-spline
neural networks design, namely the Bacterial Programming approach.

5 Bacterial Programming

In Bacterial Algorithm described in Section 3 the individuals are represented by a
sequence of numbers called chromosome. A common used approach in the field of
evolutionary algorithms is Genetic Programming, which uses the same operators
as GA, though the individuals are represented by an expression tree [6]. This tree
is composed of the function (inner) nodes and the terminal (outer) nodes,
representing the functions and their input arguments, respectively. Bacterial
Programming combines the BA and the GP techniques, it uses its coding based on
an expression tree, but the bacterial operators are applied in the evolutionary
process [3].

When using Bacterial Programming as the “optimizer” of a B-spline Neural
Network, sub-models must be added (+), sub-models of higher dimensionality
must be created from smaller sub-modules (*), and sub-models of higher
dimensionality must be split into lower dimensional sub-models (/). The node
terminals do not represent only each input variable, but also the spline order, the
number of interior knots, and their location. Fig. 2. shows the composition of the
nodes in such a tree. For the tree given here, one would expect the model’s output
to be given as a function of the addition of 3 submodels, two of each would be
bidimensional, so that:

() ()2 1 2() ()y f f f= × + × +3X X X X X X1

where Xi denotes the input variable i.

Fig. 2. A sample expression tree for B-spline networks

Obviously these functions and terminals must be well defined, so that they can
receive any value returned by other set of functions or terminals in the lower
subtrees, as their arguments.

Whenever models present a complexity higher than the number of samples within
the training set, it is desirable to perform a convenient change in their structures so

that these candidates may still participate in the evolution and not be completely
discarded. Thus, to obtain a valid candidate, during evaluation, the expression tree
is traversed and, at every node, the complexity value of the tree beneath it, is
evaluated. If this value is greater than the number of input patterns, the complexity
will be reduced in the following way:

1. By replacing the tensor product function by the addition function if the inner
node is a tensor product function.
2. By replacing the addition function by the lower sub-tree that corresponds to the
least complex ramification.

Steps 1 and 2 are performed until the candidate is designated valid. By this we
mean that branches, or subtrees, may be discarded.

5.1 The Evolutionary Process

The evolutionary process of BP is the same as in the case of BA. So, it is
involving the following steps.

1. The creation of an initial population.
2. Application of Bacterial mutation for each bacterium.
3. Application of Gene transfer operation to the current population.
4. If the terminal criterion is achieved, the algorithm stops, otherwise it continues
from step 2.

The terminal criterion is defined as the maximum number of generations allowed.

5.2 The Encoding Method

Bacterial programming employs the same operators that a bacterial algorithm uses
in its search procedure. However, from our point of view this approach is much
useful for this type of neural networks because, instead of coding the network
parameters in strings, it requires a tree structure, composed of function and
terminal nodes. This tree structure, as well as the characteristics of the nodes,
evolves from generation to generation. Next, the bacterial operators will be
described in the case of BP.

5.3 Bacterial Mutation

The basic idea of the bacterial mutation operation is the same as in BA (See
Section 3.2). However, because coding is given by an expression tree, there are
two types of parts: function and terminal parts. When a certain part of the
chromosome is randomly selected then this part can be either function or terminal
part, thus there are two types of bacterial mutation.

The following figures illustrate the mutation procedure. From Fig. 3., it can be
seen that after a function mutation on a node, all the subtree beneath is replaced by
a new randomly generated one, using the “grow” method [6]. However, terminal
mutation affects only one of the nodes. In the B-spline structure optimization task,
the mutation of a terminal can be one of 6 different types, which are:

1. Full replacement of the terminal.
2. Variable identification replacement.
3. Splines order replacement.
4. Random displacement of an interior knot.
5. Addition of N interior knots placed randomly. N is fixed to 5.
6. Removal of N interior knots. In the absence of interior knots, no operation is
executed.

In bacterial programming, mutation is applied once to the part selected, meaning
that neither the nodes selected nor the subtree will be chosen again for mutation,
in the same generation.

Fig. 3. Mutation on a function part: the

individual’s selected node subtree is
changed randomly

Fig. 4. Mutation on a terminal part: only the
selected node changed randomly

5.4 Gene Transfer

The aim of the gene transfer operation is to exchange of genetic information
between two bacteria. This procedure is somewhat similar to the crossover
operation used in genetic programming. The basic idea of the gene transfer
operation is the same as in BA (See Section 3.3). In BP, a node in the source
bacterium is selected, and the corresponding subtree will overwrite a random
selected subtree of the destination bacterium.

5.5 Bacterium Evaluation

The bacteria can be evaluated with different criteria, such as RMS (Root-Mean-
Square) in the training or test sets, or Cross-Validation; the most usual criteria are
however, information criteria, which balance the accuracy obtained against the
model complexity.

In our case, the criterion is defined as:

() ()ln lnBIC m RMS n m= + , (11)

where m denotes the number of training samples and n the model complexity
(number of basis functions).

5.6 Parameters

An evolutionary computational algorithm needs to be fine-tuned. There are
different techniques for the steps described earlier (and also different parameters)
that should be selected for the particular application. A preliminary experimental
study was conducted and the main conclusions are summarized here:

1. As it is often the case, the larger the size of the population (Nind), and the
number of generations (Ngen) employed, the better were the results obtained;
2. The parameter of bacterial mutation is the number of clones (Nclones). The larger
Nclones, the more effective is the bacterial mutation.

Conclusion

Bacterial optimization techniques were presented in this paper. These methods
apply the bacterial operators instead of the original genetic operators. So, while
the bacterial mutation is working on one individual, and tries to optimise this
bacterium, the gene transfer is applied to the whole bacteria population, avoiding
the local minima solutions. The bacterial approach can be applied for fuzzy rule
base optimization and for the design of neural networks too. Bacterial
Programming offers suitable performance for the design phase of the B-spline
networks, which is originally a highly complex computational task.

Acknowledgement

This paper is partly based on research done in collaboration with Mr. Cristiano
Cabrita and Professor Antonio Ruano (University of Algarve, Faro, Portugal).

References

[1] Botzheim, J., Hámori, B., Kóczy, L. T., Ruano, A. E.: Bacterial algorithm
applied for fuzzy rule extraction, International Conference on Information
Processing and Management of Uncertainty in Knowledge-based Systems,
Annecy, France, 2002, pp.1021-1026.

[2] Cabrita, C., Botzheim, J., Ruano, A. E., Kóczy, L. T.: Genetic programming
and bacterial algorithm for neural networks and fuzzy systems design, IFAC
International Conference on Intelligent Control Systems and Signal Processing,
Faro, Portugal, 2003, pp. 500-505.

[3] Cabrita, C., Botzheim, J., Ruano, A. E., Kóczy, L. T: Design of B-spline neural
networks using a bacterial programming approach, International Joint Conference
on Neural Networks, Budapest, Hungary, 2004, pp. 2313-2318.

[4] Cabrita, C., Ruano, A. E., Fonseca, C. M.: Single and multi-objective genetic
programming design for B-spline neural networks and neuro-fuzzy systems, IFAC
Workshop on Advanced Fuzzy/Neural Control 2001, Valencia, Spain, 2001, pp.
93-98.

[5] Holland, J. H.: Adaptation in Nature and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT
Press, Cambridge, 1992.

[6] Koza, J. R.: Genetic Programming, On the programming of computers by
means of natural selection, 6th ed., MIT. 1998.

[7] Nawa, N.E., Furuhashi, T.: Fuzzy System Parameters Discovery by Bacterial
Evolutionary Algorithm, IEEE Tr. Fuzzy Systems 7 1999, pp. 608-616.

[8] Zadeh, L. A.: Outline of a new approach to the analysis of complex systems
and decision processes, IEEE Tr. Systems, Man and Cybernetics 3 (1973), pp. 28-
44.

	1Introduction
	2Fuzzy Systems
	2.1The Encoding Method

	3Bacterial Algorithm
	3.1Generating The Initial Population
	3.2Bacterial Mutation
	3.3Gene Transfer
	3.4Stop Condition

	4B-spline Neural Networks
	4.1Normalized Input Layer
	4.2The Basis Function Layer
	4.3The Weight Layer
	4.4Sub-Modules
	4.5B-Spline Neural Networks Design

	5Bacterial Programming
	The Evolutionary Process
	The Encoding Method
	5.3Bacterial Mutation
	5.4Gene Transfer
	Bacterium Evaluation
	Parameters

	Conclusion
	Acknowledgement
	References

