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Abstract: In this paper we propose an approximation of Łukasiewicz operators by means
of sigmoid functions. Łukasiewicz operators play an important role in fuzzy logic. They are
widely used due to their good theoretical properties, i.e. the residual and material impli-
cations coincide, the law of excluded middle and the law of non-contradiction both hold.
Besides these good theoretical properties this operator family does not have a continuous
gradient. Its approximation is simple and continuously differentiable.
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1 Introduction

The Łukasiewicz operator class (see e.g. [1], [2], [3]) is commonly used for various
purposes. In this well known operator family the cut function (denoted by[·]) plays
an important role. We can get the cut function fromx by taking the maximum of0
andx and then taking the minimum of the result and1.

Definition 1.1. Let thecut function be

[x] = min(max(0, x), 1) =


0, if x ≤ 0
x, if 0 < x < 1
1, if 1 ≤ x

(1)

Let thegeneralized cut functionbe

[x]a,b = [(x− a)/(b− a)] =


0, if x ≤ a
x−a
b−a , if a < x < b

1, if b ≤ x

(2)

wherea, b ∈ R anda < b.

All nilpotent operators are constructed using the cut function. The formulas of
the nilpotent conjunction, disjunction, implication and negation are the following:

c(x, y) = [x + y − 1]
d(x, y) = [x + y]
i(x, y) = [1− x + y]

n(x) = 1− x

(3)
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Figure 1: The truth tables of the nilpotent conjunction, disjunction and implication
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Figure 2: Two generalized cut functions.

The truth tables of the former three can be seen on fig. 1.
The Łukasiewicz operator family used above has good theoretical properties.

These are: the law of non-contradiction (that is the conjunction of a variable and
its negation is always zero) and the law of excluded middle (that is the disjunction
of a variable and its negation is always one) both hold, and the residual and ma-
terial implications coincide. These properties make these operators to be widely
used in fuzzy logic and to be the closest one to classic Boolean logic. Besides these
good theoretical properties this operator family does not have a continuous gradi-
ent. So for example gradient based optimization techniques are impossible with
Łukasiewicz operators. The root of this problem is the shape of the cut function
itself.



2 Approximation of the Cut Function

A solution to above mentioned problem is a continuously differentiable approxima-
tion of the cut function, which can be seen on fig. 3. In this section we’ll construct
such an approximating function by means of sigmoid functions. The reason for
choosing the sigmoid function was that this function has a very important role in
many areas. It is frequently used in artificial neural networks, optimization meth-
ods, economical and biological models.
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Figure 3: The cut function and its approximation

2.1 The Sigmoid Function

The sigmoid function (see fig. 4) is defined as

σ
(β)
d (x) =

1
1 + e−β(x−d)

(4)

where the lower indexd is omitted if 0.
Let us examine some of its properties which will be useful later:

• its derivative can be expressed by itself (see fig. 5):

∂σ
(β)
d (x)
∂x

= βσ
(β)
d (x)

(
1− σ

(β)
d (x)

)
(5)

• its integral has the following form:∫
σ

(β)
d (x) dx = − 1

β
ln
(
σ

(−β)
d (x)

)
(6)

Because the sigmoid function is asymptotically 1 asx tends to infinity, the integral
of the sigmoid function is asymptoticallyx (see fig. 6).
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Figure 4: The sigmoid function, with parametersd = 0 andβ = 4
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Figure 5: The first derivative of the sigmoid function

2.2 The Squashing Function on[a, b]

In order to get an approximation of the generalized cut function, let us integrate
the difference of two sigmoid functions, which are translated bya andb (a < b),
respectively.

1
b− a

∫
σ(β)

a (x)− σ
(β)
b (x) dx =

=
1

b− a

(∫
σ(β)

a (x) dx−
∫

σ
(β)
b (x) dx

)
=

=
1

b− a

(
− 1

β
ln
(
σ(−β)

a (x)
)

+
1
β

ln
(
σ

(−β)
b (x)

))
After simplification we get the squashing function on the interval[a, b]:
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Figure 6: The integral of the sigmoid function, one is shifted by1

Definition 2.1. Let theinterval squashing functionon [a, b] be

S
(β)
a,b (x) =

1
b− a

ln

(
σ

(−β)
b (x)

σ
(−β)
a (x)

)1/β

=
1

b− a
ln
(

1 + eβ(x−a)

1 + eβ(x−b)

)1/β

. (7)

The parametersa andb affect the placement of the interval squashing function,
while theβ parameter drives the precision of the approximation. We need to prove
thatS(β)

a,b (x) is really an approximation of the generalized cut function.

Theorem 2.2. Leta, b ∈ R, a < b andβ ∈ R+. Then

lim
β→∞

S
(β)
a,b (x) = [x]a,b (8)

andS
(β)
a,b (x) is continuous inx, a, b andβ.

Proof. It is easy to see the continuity, becauseS
(β)
a,b (x) is a simple composition

of continuous functions and because the sigmoid function has a range of[0, 1] the
quotient is always positive.

In proving the limit we separate three cases, depending on the relation between
a, b andx.

• Case 1 (x < a < b): Sinceβ(x − a) < 0, soeβ(x−a) → 0 and similarly
eβ(x−b) → 0. Hence the quotient converges to1 if β →∞, and the logarithm
of one is zero.



• Case 2 (a ≤ x ≤ b):

1
b− a

ln

(
lim

β→∞

(
1 + eβ(x−a)

1 + eβ(x−b)

)1/β
)

=

=
1

b− a
ln

 lim
β→∞

(
eβ(x−a)

(
e−β(x−a) + 1

)(
1 + eβ(x−b)

) )1/β
 =

=
1

b− a
ln

(
lim

β→∞

ex−a
(
e−β(x−a) + 1

)1/β(
1 + eβ(x−b)

)1/β

)
=

=
1

b− a
ln

(
ex−a lim

β→∞

(
e−β(x−a) + 1

)1/β(
1 + eβ(x−b)

)1/β

)
We transform the nominator so that we can take theex−a out of the limes. In
the nominatore−β(x−a) remained which converges to0 as well aseβ(x−b) in
the denominator so the quotient converges to1 if β →∞. So as the result, the
limit of the interval squashing function is(x−a)/(b−a), which by definition
equals to the generalized cut function in this case.

• Case 3 (a < b < x):

1
b− a

ln

(
lim

β→∞

(
1 + eβ(x−a)

1 + eβ(x−b)

)1/β
)

=

=
1

b− a
ln

 lim
β→∞

(
eβ(x−a)

(
e−β(x−a) + 1

)
eβ(x−b)

(
e−β(x−b) + 1

) )1/β
 =

=
1

b− a
ln

(
lim

β→∞

ex−a
(
e−β(x−a) + 1

)1/β

ex−b
(
e−β(x−b) + 1

)1/β

)
=

=
1

b− a
ln

(
ex−a

ex−b
lim

β→∞

(
e−β(x−a) + 1

)1/β(
e−β(x−b) + 1

)1/β

)

We do the same transformations as in the previous case but we takeex−b

from the denominator, too. After these transformations the remaining quotient
converges to1, so

lim
β→∞

S
(β)
a,b (x) =

1
b− a

ln
(

ex−a

ex−b

)
=

1
b− a

ln
(
ex−a−(x−b)

)
=

=
1

b− a
ln
(
eb−a

)
=

b− a

b− a
= 1.

On fig. 7 the interval squashing function can be seen with variousβ parameters.
The following proposition states some properties of the interval squashing function.
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Figure 7: On the left image: the interval squashing function with an increasingβ
parameter (a = 0 andb = 2). On the right image: the interval squashing function
with a zero and a negativeβ parameter
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Figure 8: The approximation of the nilpotent conjunction withβ values1,4,8 and
32

Proposition 2.3.

lim
β→0

S
(β)
a,b (x) = 1/2 (9)

S
(−β)
a,b (x) = 1− S

(β)
a,b (10)

As an another example, the nilpotent conjunction is approximated with the in-
terval squashing function on fig. 8.

For further use, let us introduce an another form of the interval squashing func-
tion’s formula. Instead of using parametersa andb which were the ”bounds” on
thex axis, from now on we’ll usea andδ, wherea gives the center of the squash-
ing function and whereδ gives its steepness. Together with the new formula we
introduce its pliant notation.



Definition 2.4. Let thesquashing functionbe

〈a <δ x〉β = S
(β)
a,δ (x) =

1
2δ

ln

(
σ

(−β)
a+δ (x)

σ
(−β)
a−δ (x)

)1/β

, (11)

wherea ∈ R andδ ∈ R+.
If thea andδ parameters are both1/2 we will use the following pliant notation

for simplicity:
〈x〉β = S

(β)
1
2 , 1

2
(x), (12)

which is the approximation of the cut function.

The inequality relation in the pliant notation refers to the fact that the squashing
function can be interpreted as the truthness of the relationa < x with decision level
1/2, according to a fuzziness parameterδ and an approximation parameterβ (see
fig. 9).

Figure 9: The meaning of〈a <δ x〉β

The derivatives of the squashing function can be expressed by itself and sigmoid
functions:

∂S
(β)
a,δ (x)
∂x

=
1
2δ

(
σ

(β)
a−δ(x)− σ

(β)
a+δ(x)

)
(13)

∂S
(β)
a,δ (x)
∂a

=
1
2δ

(
σ

(β)
a+δ(x)− σ

(β)
a−δ(x)

)
(14)

∂S
(β)
a,δ (x)
∂δ

=
1
2δ

(
σ

(β)
a+δ(x) + σ

(β)
a−δ(x)

)
− 1

δ
S

(β)
a,δ (x) (15)



2.3 The Error of the Approximation

The squashing function approximates the cut function with an error. This error can
be defined in many ways. We have chosen the following definition.

Definition 2.5. Let the approximation error of the squashing function be

εβ = 〈0 <δ (−δ)〉 =
1
2δ

ln

(
σ

(−β)
δ (−δ)

σ
(−β)
−δ (−δ)

)1/β

(16)

whereβ > 0.

Because of the symmetry of the squashing functionεβ = 1 − 〈0 <δ δ〉, see
fig. 9.

The purpose of measuring the approximation error is the following inverse prob-
lem: we want to get the correspondingβ parameter for a desiredεβ error. We state
the following lemma on the relationship betweenεβ andβ.

Lemma 2.6. Let us fix the value ofδ. The following holds forεβ .

εβ < c · 1
β

, (17)

wherec = ln 2
2δ is constant.

Proof.

εβ =
1

2δβ
ln
(

1 + eβ(−δ+δ)

1 + eβ(−δ−δ)

)
=

1
2δβ

ln
(

2
1 + e−2δβ

)
=

=
ln 2
2δβ

− ln(1 + e−2δβ)
2δβ

< c · 1
β

So the error of the approximation can be upper bounded byc · 1
β , which means

that by increasing parameterβ, the error decreases by the same order of magnitude.

Conclusion

In this paper we have reviewed the cut function, which is the basis of the well known
Łukasiewicz operator class. This cut function is piecewise linear, it can not be con-
tinuously differentiated. We have created an approximation of the cut function (the
squashing function) by means of sigmoid functions with good analytical properties,
for example fast convergence and easy calculation.
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