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Abstract: A speed sensorless neuro-fuzzy controller is proposed for brush type DC 
motors. The actual speed of the DC machine is estimated using a feed-forward 
neural network. The inputs of the neural network are the armature current and 
voltage of the DC machine and their changes in time. Because DC machines are 
usually fed by 4-quadrant chopper, the measured armature voltage and current 
contains higher order harmonics, which have reduced value on the output of the 
neural network. Since the fuzzy controller is a robust system, which tolerates the 
noisy input to some degree, the observed speed signal is fed to a PI like fuzzy 
controller. The output of the fuzzy controller is the current reference for the PWM 
servo system. The proposed neuro-fuzzy controller is robust to the change of load, 
inertia and speed reference. 
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1 Introduction 

In most servo systems the speed information is usually obtained from a shaft 
encoder. The precision of the shaft encoder influences the smoothness of the 
measured speed, especially in the lower speed range [6]. In order to avoid this 
drawback, one may use a higher precision shaft encoder, which however, 
increases the overall price of the DC drive. In order to avoid shaft encoder at all, 
the speed of the brush type DC motor is estimated from the motor induced voltage 

eU . One classical way for brush type DC motor with constant flux is shown in 
Fig.1 where the rotor speed is estimated by measuring the induced voltage. The 
voltage equation of the DC motor circuit is  

 RIUU e ⋅+=  (1) 



where I  represents the armature current and R  the armature resistance. The 
potential difference in the bridge is half of the induced voltage, which is 
proportional to the rotor speed. The factor K  depends on the flux (excitation) and 
the motor construction. The speed of the DC motor is controlled by changing the 

dU  voltage. 
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Fig.1. Estimating rotor speed at constant flux 
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The presented rotor speed estimation has two shortcomings: the flux must be 
constant and the dU  voltage cannot be changed abruptly, otherwise another term 
appears in equation (1), namely the change of current. The first shortcoming can 
be avoided using DC servomotor with permanent magnet, in which case the flux is 
constant. However, the second shortcoming it makes impossible to use this 
method in modern PWM servo systems, where the motor voltage has square-wave 
form with 2 or 3 values, namely { }dd UU +− ,  or { }dd UU +− ,0, . The chopping 
frequency of the PWM system is 10kHz-50kHz. The voltage equation of the 
armature circuit in this case is 

 
dt
diLRiuu e +⋅+=  (2) 

where R , L  are the armature resistance and inductance, respectively. Lowercase 
letters in equation (2) indicate that using PWM servo system the instantaneous 
values of current and voltage should be considered. Reordering equation (2) and 
taking into account that ωKue = the following relation is obtained: 

 
dt
diLRiuK −⋅−=ω  (3) 

Thus, from equation (3) the rotor speed can be estimated. However, measuring of 
u  and i  is not an easy task when using 4 quadrant chopper amplifier. In the next 
section a feed-forward neural network is shown, which is trained to approximate 
equation (3). 



2 Estimating the armature voltage in case of PWM 

There is no use to measure the instantaneous armature voltage which, as was 
mentioned already, is varying between { }dd UU +− ,  or { }dd UU +− ,0, , depending 
on the applied modulation technique, symmetrical or cyclical, respectively. It is 
more appropriate to estimate the so-called instantaneous-average armature 
voltage. It is instantaneous in the sense that changing the current reference of the 
current controller abruptly the average armature voltage should change abruptly, 
as well. But it is also an average value, because for a given current reference (in 
steady state) the estimated armature voltage has an almost constant value with 
“noise” and not an impulse-like signal. There are two ways to estimate the 
armature voltage: either calculating the armature voltage from the switch on/off 
time of the chopper or measuring the integrated armature voltage using ADC. 
Further these two techniques will be presented briefly. 

2.1 Calculating the instantaneous-average armature voltage 

When discrete current controller is implemented with symmetrical modulation 
technique using a DSP (Digital Signal Processing) the instantaneous-average 
armature voltage ua can be calculated using the following relation (considering 
ideal switches in the chopper – see Fig.2.): 
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where 1t  is the time during which the armature voltage is dU+  and 2t is the time 
when the armature voltage is set to dU− . Thus, at a carrier frequency of 20 kHz, 
the instantaneous-average armature voltage should be calculated in every 50 µs 
using equation (4), where 1t  and 2t  can be obtained using a timer with a clock 
frequency of at least 10 times higher then the carrier frequency. (In order to reduce 
the fluctuation, the average of the last 10 calculated values is given to the input of 
the neural network.)  

The presented method has the advantage that there is no need to measure the 
armature voltage directly. However, the exact schedule of switching of the 
chopper transistors is needed. 

2.2 Measuring the instantaneous-average armature voltage 

Using a 20 kHz 4 quadrant chopper with symmetrical modulation technique the 
armature voltage varies between { }dd UU +− , , and it’s average value might change 
in every 50 µs. Taking into account that the control cycle time is in order of 100 



µs, the instantaneous-average voltage should be measured in such way that its 
fluctuation be minimal in one hand but an abrupt change in load or reference be 
followed as well. Using RC integration circuit (filter) the average armature voltage 
can be obtained by hardware. An important question is, what value should be 
selected for Rv and Cv, or more importantly what time-constant of the RvCv circuit 
needed? 

As it can be seen in Fig. 2., the armature voltage varies between { }dd UU +− , . 
There must be made a compromise of requirements when the armature voltage is 
measured in steady state and in transient state. In steady state (the upper diagram 
in Fig. 2.) the armature voltage variation can be seen as a noisy DC voltage. Thus, 
this variation has to be filtered as much as possible. However, in transient state 
(the lower diagram of Fig. 2.) the measured voltage should follow the armature 
voltage as quickly as possible. The voltage on the capacitance Cv is changing by  
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from where the RvCv time-constant can be calculated as  
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Taking into account that the control cycle time is in order of 100 µs let the 
variation of the steady-state voltage at 50% duty cycle be 10% of Ud, that is, 
UC(50µs)=0.1Ud – results that the time-constant of the RvCv circuit should be set 
to TRC=0.5 ms.  
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Fig. 2. Armature voltage (real with thin and measured with thick line) 
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It is worth noting that using cyclical modulation technique the fluctuation of the 
armature voltage and current is much less than in case of symmetrical modulation 
technique. The armature voltage is changed only between –Ud, 0 or 0, +Ud with a 
frequency equal to the double of the chopping carrier frequency used by the 
modulation, thus the armature current fluctuation is much less. 

3 Estimating the speed using neural network 

From equation (3) the rotor speed can be obtained by measuring the armature 
voltage, armature current and the derivative of the armature current. Because the 
armature voltage is varying between { }dd UU +− , , the armature current also has 
fluctuation. Thus, before calculating the change of armature current it should be 
filtered (we are not interested in the derivative of the fluctuation, only in the trend 
of the change of the armature current). Experience shows that much better results 
can be achieved if the derivative of the armature voltage is also supplied to the 
neural network (in the same way as the armature current). The time-constant of the 
RiCi circuit for the derivative of armature voltage and current is calculated on the 

bases of equation (6). Thus, the neural network has four inputs: 
dt
dii

dt
duu ,,,  while 

the output is the estimated rotor speed ω. 
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Fig. 3. The structure of the neural network used 

 



The applied neural network is a multilayer feed-forward network with 7 hidden 
neurons with tan-sigmoid transfer function and 1 output neuron with linear 
transfer function as it can be seen in Fig. 3. Each neuron has weights and a bias, 
not shown in the picture.  

The neural network training can be made more efficient if certain preprocessing 
steps are performed on the network inputs and targets (see User’s Guide of 
MATLAB Neural Network Toolbox). The simplest preprocessing technique is the 
MIN-MAX scaling, when the inputs and targets are scaled so they always fall into 
a specified range, for example [-1, +1]. The following relation is used to 
preprocess the inputs and targets: 

 12 −
−

−
⋅=

MINMAX
MINPPN  (7) 

where P is the original and NP  is the normalized value.  

The trained neural network estimate the motor speed in the range of [-1, +1], thus, 
it must be postprocessed in order to obtain the corresponding value:  

 MIN
MINMAX

PP N +
−
+

⋅=
15.0  (8) 

However, postprocessing is eliminated when the output of the neural network is 
the input of the fuzzy controller, which has normalized inputs and outputs. The 
neural network is trained with input/target pair obtained from the DC machine step 
response. Different speed references can be included in the training set. After 
training, the neural network is able to estimate the speed very well not only for the 
speed values, which were included into the training set.  

It is worth nothing that the neural network is trained not only for steady state but 
for transient state as well (step response). Thus, the neural network can handle the 
abrupt change of speed reference and load, as well. 

4 Considering flux control 

When the rotor speed is modified by flux control, a new input has to be added to 
the neural network. This 5th input is the excitation current. The neural network has 
to be trained with a training set, which includes the excitation current. At least two 
different excitation current values should be included in order to obtain good 
results. In this way the neural network will interpolate or even extrapolate for 
excitation currents different from the training set. The goodness of interpolation or 
extrapolation depends on the number of different excitation currents included in 
the training set. Choosing the right excitation current and speed reference values 
for training enhances the neural network response. 



5 Adaptive fuzzy controller 

For speed control PI-like fuzzy controller (FC) is used with inputs of error and 
change of error, where the error is the difference between the speed reference 
signal and the estimated rotor speed. The output of the controller is the current 
reference for the PWM servo system. The usage of the fuzzy controller has two 
advantages: 1.) the fuzzy controller has nonlinear transfer function, thus better 
controller can be obtained compared to the conventional PI controller [2]; 2.) the 
fuzzy controller is a robust system, which tolerates the noisy input to some degree. 

An adaptive fuzzy controller is implemented in respect to the change of load 
torque. In every control cycle first the load is estimated then the membership 
functions of the FC are modified in respect to the evaluated load. The best 
estimation of the load can be achieved by computing the derivative of the speed 
and the armature current. However, the motor current and observed speed contains 
noises, therefore the load estimation is performed by integrating the motor current 
to filter out the noises. The load is computed by the following formula:  
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where J represents the inertia, vM  is the frictional torque and ω∆  is the change 
of speed during TNt ⋅=∆  time, where N  represents the number of samples 
considered to damp the noise of the motor current and fluctuation in the change of 
speed, while T  is the speed control cycle time. 
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Fig. 4. The input membership functions of the fuzzy controller  



By altering the position of the membership functions (see Fig. 4) in the input 
universe the influence of the change of load torque can be modified. First the 
effect of load torque variation to the system behaviour should be considered. 
When the load torque has the same direction as the motor torque, in order to 
eliminate any overshoot, the fuzzy input should be less sensitive to the error. Thus, 
the membership functions NS, PS of error are moved away from 0. On the 
contrary, when the load torque has opposite direction compared to the motor 
torque, the fuzzy input should be more sensitive to the error. Thus, the 
membership functions NS, PS of the error are moved towards 0. 

Finally, as it can be seen in Fig. 4 and Fig. 5, the nonlinearity in the fuzzy 
controller is introduced by the appropriate distribution and shape of the input and 
output membership functions. 
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Fig. 5. The output membership functions of the fuzzy controller 

6 Simulation results 

Simulation results were obtained using MATLAB Simulink program. The neural 
network was trained in batch mode with Levenberg-Marquardt algorithm. 
Training set was obtained using step response of the DC motor with positive to 
negative load. The obtained result in Fig.6 shows a small overshoot of speed. 

7 Experimental results 

The experimental plant consists of two identical permanent magnet DC motors 
that are joined together by a clutch as it is shown in Fig. 7. One of them is the 
controlled motor and the other one is used as a load. Both DC motors are driven 
separately by two identical PWM servo amplifiers containing analogue PI 
controllers for the current loop as well as a four-quadrant chopper with 22 kHz 
chopping frequency and symmetrical modulation technique. The fuzzy controller 



and with the neural network are implemented in the same personal computer. The 
control program receives the armature current and voltage samples at every 400 
µs. The shaft position of the motor is obtained from optical encoder (ROD426) 
through encoder control card (EB3005) and is used only to obtain the target for the 
neural network training set. The DC servomotor parameters are shown in Table 1. 

 
Fig. 6. Simulation result with change of load from +3 to –3 Nm 
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Fig. 7. Experimental plant for the neuro-fuzzy controller 
 

The neural network was trained in batch mode with Levenberg-Marquardt 
algorithm using three sets of input/target pairs corresponding to samples obtained 
from three step responses of the reference speed signals: 4000, 5000 and 6000 
rad/s. After the neural network was trained the encoder was unplugged and the 
fuzzy controller received the estimated speed signal from the neural network. The 



obtained results are shown in Fig. 8, Fig. 9. and Fig. 10. (w – rotor speed [rad/s], i 
– armature current [A], u – armature voltage [V]). These results testify to 
acceptable accuracy of speed in wide range.  

 

Fig.8. Step response of the neural-fuzzy controller (wref=6000rad/s) 

 

Table 1. Parameters of the DC servomotor 

Parameters Notation Value Unit
Nominal torque Mn 3 Nm 

Nominal current In 13 A 

Maximal current Imax 80 A 

Speed domain ω 0-2500 rpm 

Frictional torque Mf 0.113 Nm 

Rotor inertia Jn 0.00192 kgm2 

Torque coefficient Kn 0.24 Nm/A 

Armature La 1.6 mH 

Armature resistance Ra 0.49 Ω 



 

 
Fig.9. Step response of the neural-fuzzy controller (wref=4500rad/s) 

 

Conclusions 

In this paper a robust neuro-fuzzy speed control for brush type DC drive is 
presented. A neural network is used to estimate the rotor speed of the DC machine 
by measuring the armature current and voltage. The estimated speed is applied to 
the adaptive fuzzy controller, which provides robust control of the speed of DC 
drive. The results of the experiment on the real plant demonstrates that the neural 
network is able to estimate not only the speeds included in the training set, but it 
also is able to interpolate and extrapolate well. The proposed adaptive fuzzy 
controller shows robustness to the fluctuation of the estimated speed and to the 
variation of load torque.  
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Fig.9. Step response of the neural-fuzzy controller (wref=2600rad/s) 
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