
Overview of Nearest Neighbor Subtree Search 
Methods 

László Kovács, Tibor Répási, Erika Baksa-Varga 
Department of Information Technology, University of Miskolc 
kovacs@iit.uni-miskolc.hu, repasi@iit.uni-miskolc.hu, iitev@uni-miskolc.hu 

Abstract. In many scientific areas there is a frequent need to extract a common pattern 
from multiple data. In most cases, however, an approximate but low cost solution is 
preferred to a high cost exact match. To establish a fast search engine an efficient heuristic 
method should be implemented. Our investigation is devoted to the approximate nearest 
neighbor search (ANN) for unordered labeled trees. The proposed modified best-first 
algorithm provides a O((Nq+Nb)·M + K·Nq·Nb/M) cost function with simple implementation 
details. According to our test results, realized with smaller trees where the brute-force 
algorithm could be tested, the yielded results are a good approximation of the global 
optimum values. Based on the results of the tests, the execution cost for the base best-first 
algorithm is about one order of magnitude larger than the cost for the porposed modified 
best-first approximation method. 

Keywords: tree matching, approximate nearest neighbor search 

1 Introduction 

In this section we review the different researched approaches to comparing trees, 
as well as the algorithms developed so far to solve these problems. P. Bille 
published an extensive survey [1] on comparing trees with exact searching 
methods. As a conclusion from his work it turned out that all of the unordered 
versions of the problems in general are NP-hard. Indeed, the tree edit distance and 
alignment distance problems are even MAX SNP-hard. However, using special 
constraints polynomial time algorithms are available, just like for the ordered 
versions of the problems. These are all based on the classic technique of dynamic 
programming.  

The general ordered tree edit distance, also called tree-to-tree correction problem 
was also fully reviewed in Technical Report 95-372 [2]. The problem was 
introduced by Tai [3] as a generalization of the string edit distance problem. His 
algorithm, which solved the problem without recursion, has its time and space 
complexity in O(nmd2d’2), where n and m are the maximum number of children 

 



from any node in each of the trees, while d and d’ are the maximum depth of the 
trees. Zhang and Shasha [4] numbered the trees using postorder traversal instead 
of preorder, so the algorithm’s space complexity is O(nm), while its time 
complexity is O(nmdd’). Klein [5] solved the problem in O(n3logn) time and 
O(nm) space. In his paper he proved that the algorithm can be extended to 
unrooted ordered trees within the same time and space bounds. Chen [6] applied 
fast matrix multiplication to solve the problem. The unordered version of the 
problem is NP-complete even for binary trees with a label alphabet of size 2. It 
was shown in [7] that under special restrictions polynomial time algorithms exist.  

There are other variants of the edit distance problem as well. One of them is the 
unit cost edit distance, where unit cost is defined as the number of edit operations 
required. In [8] the ordered version of the problem is considered and an algorithm 
with O(u2min{n,m}min{l,l’}) time need is introduced, where l and l’ are the 
number of leaves of the trees. The algorithm uses techniques from Ukkonen [9], 
and Landau and Vishkin [10]. The recursive solution of Selkow [11] used the 
basic operations, but insertions and deletions were restricted to leaf nodes only, 
which made the algorithm very simple and therefore its time complexity is O(nm). 
This is therefore sometimes referred to as the 1-degree edit distance. Chawathe 
[12] utilizes the same restrictions, but in cases when external memory is needed to 
calculate the edit distance.  

Tree inclusion, a special case of edit distance, is the problem to decide if tree T1 
can be included in T2. T1 is included in T2 if there is a sequence of delete 
operations performed on T2 which make T2 isomorphic to T1. For the ordered tree 
inclusion problem Kilpeläinen and Mannila [13] presented the first polynomial 
time algorithm using O(nm) time and space. A more space efficient version of this 
was given in [14] using O(nd’) space. Later Richter [15] and Chen [16] 
developed more complex algorithms. In [13], [17] it is shown that the unordered 
tree inclusion problem is NP-complete. In spite of this an algorithm using 
O(mni22i) time exists. 

Torsello and Hancock [18] prove, that a tree t’ can be generated from a tree t 
with a sequence of node removal operations if and only if t’ is an obtainable 
subtree of the directed association graph. Consequently the minimum cost edited 
tree isomorphism between two trees is a maximum common consistent subtree of 
the two directed association graphs if the node removal cost is uniform, and this 
result can also be extended to non-uniform cost. The background for this lies in 
[19], where the relationship between graph edit distance and the size of the 
maximum common subgraph is shown, and also their computational equivalence 
is demonstrated. This is an important observation since it has been established by 
Barrow and Burstall [20] that the maximum common subgraph problem may be 
transformed into a maximum clique problem using a derived structure referred to 
as the association graph. Pelillo et al. [21], for instance, transform the tree 
isomorphism problem into a single max clique problem, a technique already used 
for the generic graph isomorphism problem. To obtain a maximal tree match, i.e. a 



maximal solution to the max clique problem, they use relaxation labeling. Wang 
et al. [22] considers the largest approximately common subtree problem for 
ordered, labeled trees using the edit distance to measure the dissimilarity of two 
trees. They present a dynamic programming algorithm, which runs as fast as the 
fastest known algorithm for computing the edit distance of trees. 

This problem was investigated for unordered trees by Khanna, Motwani and 
Yao [23]. They created an algorithm for trees of bounded degree with 
performance ratio O(nloglogn/log2n) and then extended this to trees of unbounded 
degree with at most poly-log labels, obtaining a ratio of O(n(loglogn)2/log2n). 
Akutsu and Halldórsson [24] also considers the approximation of the largest 
common subtree (and its special variation, the largest common edge subgraph) and 
largest common point set problems for unordered trees (and for ordered trees as a 
special case), and a general search algorithm is presented which approximates 
both problems within a factor of O(n/logn). For trees of bounded degree an 
improved algorithm is developed which approximates the largest common subtree 
within a factor of O(n/log2n). A large amount of work has been performed for 
comparing unordered trees based on various distance measures, especially on edit 
distance as the most commonly used distance measure. Shasha et al. [25], 
however, proposed a new approach, called Atree-Grep. They addressed the 
approximate nearest neighbor search problem for unordered labeled trees. Their 
algorithm, called ‘pathfix’, consists of two phases. First, the paths of the trees are 
stored in a suffix array and then the number of mismatching paths are counted 
between the query tree and the data tree. To speedup the search, they use a hash-
based technique to filter out unqualified data trees at an early stage of the search. 
The algorithm has been implemented into two special Web-based search engines 
and proved to be fast, particularly when the dictionary size of node labels is large. 

2 Distance measures for tree comparison 

As can be seen, most of the proposals in subtree matching are based on the edit 
distance between trees. This distance metric is a natural extension of the edit 
distance concept used for string comparisons. This metric provides an exact 
distance measurement between the trees. The drawback of these algorithms is the 
high cost of the computations. In the case of online applications with large tree 
datasets, the execution time is a crucial factor. In these kinds of applications, an 
approximate but low cost solution is preferred to a high cost exact solution. Our 
investigation is devoted to the approximate nearest neighbor search (ANN) for 
unordered labeled trees. Our goal is to construct an efficient heuristic method for 
the ANN problem. Since the ANN problem for edit distance metric is an NP-
problem as is proven in [7], a modified distance definition is introduced. 



Let D denote a domain set. This contains the node labels. The symbol T denotes 
an unordered, labeled tree. The following denotations related to the tree structure 
are used in the paper: 

n a node of the tree 
l(n) the label of node n, l(n) ∈ D 
TD set of unordered, labeled trees on D 
V(T) vertices of T 
E(T) edges of T 
r(T) the root node of T 

In the case of edit distance, a set of elementary transformation functions is defined 
on TD. This set is denoted as ED. The cost value of the elementary transformations 
is a non-negative real number. The corresponding cost function is denoted by  

 c : ED → R+. 

It is assumed that TD is closed to ED, i.e.  

 e : TD → TD  ∀e ∈ ED, 

 ∀T1, T2 ∈ TD : ∃ e1,e2,…,em ∈ ED: e(T1) = emοem-1ο..e2οe1(T1) = T2. 

Let us denote the set of chain of transformations from Ti to Tj by Ei,j. The cost of 
chain e is defined as the sum of the single transformation steps: 

 c(e) = Σ c(ei). 

The edit distance between Ti and Tj is defined as the minimal cost of 
transformation chains from Ti to Tj: 

ci,j = min{ c(e) | e ∈ Ei,j }. 

Usually, the following elementary e operations are defined for tree objects: 
- relabel: assigns a new node name to the root of the tree 
- insert: inserting a new node into the children of the root node 
- delete: deleting a node from the children of the root node 
- insert tree: inserting a tree under the root node 
- delete tree: deleting a tree from the children of the node 

The list of elementary transformations with minimal cost is usually generated with 
a dynamic programming method. According to [1, pp.7], the tree distance value 
can be calculated using the following recursive formula: 

d(0,0) =   0 
d(F,0) =   d(F-v,0) + c(v,0) 



d(0,F) =  d(0,F-v) + c(0,v) 

d(F1,F2) = min  { d(F1-v,F2)  + c(T(v),0) 
d(F1,F2-v)  + c(0,T(v)) 
d(F1-T(v),F2- T(w))  + c(T(v),T(w)) 

where F denotes a tree and T(v) denotes a tree with root element v. The 
computation cost of the basic dynamic programming method for trees is O(|T|4). 
This is a very high cost value for an ANN problem, as the distance computation 
should be calculated for a large number of pairs. It is proved in [25] that the ANN 
problem for edit distance metric is an NP-complete problem. In spite of this 
difficulty, most of the proposals for ANN searching for trees use the edit distance 
measure. There are very few proposals that apply a simplified distance function to 
provide a lower cost solution. 

A good example for this approach is [25], where the distance from T1 to T2 is 
measured with the total number of root-to-leaf paths in T1 that do not appear in T2. 
The nodes in T2 that do not appear in T1 can be freely removed. As can be seen, 
this definition introduces an asymmetric distance concept. In the definition T1 
denotes the query tree while T2 is the searched tree. In our approach, another 
simplified distance function was selected.  

3 Modified best-first algorithm 

Two trees are said to be similar if they have similar vertices with similar edges. 
During the editing process every vertex of the query tree is either transformed into 
a vertex of the base tree or it is deleted. Based on this transformation, every vertex 
of the query tree can be mapped either to a target vertex or to the sink symbol. 
Using this approach, a generalized mapping can be defined between the query and 
the base tree. We define m( ) as the distance mapping from T1 to T2 in the 
following way: 

1. m : V(T1)  →  V(T2) ∪ ε 
2. ∀v, m(v) ∈V(T2) : l(v) = l(m(v)) 
3. ∀v1 ≠v2, m(v1), m(v2) ∈V(T2) : m(v1) ≠ m(v2) 
4. ∀v1 ≠v2, m(v1), m(v2) ∈V(T2): v1 < v2 ⇔ m(v1) < m(v2) 

According to the first property, every node in T1 is mapped either to a node in T2 
or is deleted, i.e. it is mapped to the ε symbol. The second property says that a 
vertex should be mapped only to nodes of the same label. Due to the third 
property, the different query vertices can not be mapped to the same base vertex. 
The fourth property is called ancestor condition, the ancestor-descendants 
relationship among the query vertices must be preserved in the target tree, too.  



Other types of relationships among the query vertices are neglected and not 
preserved. In this approach, the sibling vertices may be mapped to parent-child 
vertices, if the existing parent-child relationships are preserved. The parent-child 
relationships are the only important information stored in the query tree. The 
absence of an edge means in our approach a ‘do not know’ information. In this 
case, we don not care about the existence of an edge between the mapped vertices 
in the base tree. Figure 1 shows an example for this mapping. 

 

 

 

 

 

 a)    b)   c) 
Figure 1 

Figure 1a) and Figure 1b) show valid mappings. The sibling nodes in the query 
tree are mapped to sibling nodes in Figure 1a), and to parent-child nodes in Figure 
1b). Figure 1c) shows an invalid mapping as the parent-child relationship is not 
preserved. This kind of distance value differs from the usual edit distance in the 
following aspects: 1) it does not take the relabeling operation into account, and 2) 
only one side of the operands can be deleted.  

Based on this mapping, a distance value can be defined between two trees. The 
cost of mapping m is defined as the sum of the vertex mappings related to the 
query tree: 

 cost(m) = Σ n ∈ V(T) c(n), 

where  
C2,  if m(n) = ε  ∨  m(r(T)) = ε 
0, if n = r(T)  ∧  m(r(T)) ≠ ε c(n) = {C1  (d(m(n),m(pp(n)) – 1) otherwise. 

In this definition, pp(n) denotes the nearest ancestor of n in the query tree which is 
mapped to a non-ε element. If the root of the query tree is mapped to ε then c(n) is 
C2, otherwise the path from n to r(T) (excluding n and including r(T)) contains 
minimum one vertex mapped to a non-ε value. In this case both m(n) and m(pp(n)) 
are non-ε elements. The d( ) function denotes the length of path from m(pp(n)) – 
m(n) in the base tree. As mapping m preserves the parent-child relationship, 
m(pp(n)) is an ancestor of m(n). Thus d( ) yields a positive integer value. C1 and 
C2 are cost units. C1 corresponds to gap-lengths between two preserved vertices 
and C2 denotes the cost for vertex deletion. In our approach, C2 is greater than C1 



since the absence of an element means a larger difference than the relocation of 
the element.  

 

 

 

 

Figure 2 

As an example, let the calculation of the mapping cost for Figure 2 stay here. The 
cost for root mapping is 0. The cost for white node is also 0 (there is no gap in the 
mapped path). The cost for black node is 1 (one node length gap). The total cost is 
0 + 0 + 1 = 1. We remark that in some applications it seems useful to introduce a 
weight factor in the cost expression. In this case the different edges may have 
different importance factors.  

It can be seen that the distance measure based on this cost value does not meet the 
requirements of a metric space. The metric distance function should be symmetric 
while the given cost function is asymmetric. The roles of the query and base trees 
are distinguished. This corresponds to our intent, as we try to find a best matching 
sub-tree included in the base tree. The goal is to find a mapping with minimal cost 
value. 

Taking a query tree T1 with Nq nodes and a base tree T2 with Nb nodes, the number 
of potential mappings is O(Nb! / (Nb-Nq)!). Although the ancestor criteria restricts 
the set of potential mappings, the number of possible enabled mappings is too 
high. It would be very costly to test all of the possible mappings. Thus some kind 
of heuristics should be applied to speed up the matching process. In our 
investigation a variant of the base best-first search method was selected.  

The best first search method works on a state-tree. Each node of the tree is 
assigned to a cost value. The goal is to find the path with the minimal cost value. 
The best-first search divides the nodes into three distinct groups: the nodes tested 
(G1), the nodes ready to be tested (G2), and the rest (G3). Initially, G1 is empty and 
G2 contains only the root element. In a loop, the node from the ready state with the 
best (minimal) cost value is selected to be tested. During the test, the children of 
the node are evaluated and moved from the G3 group into the G2 group. The loop 
terminates if a leaf node is selected for testing.  

In the applied variant, called m-best-first, the nodes of the state-tree are assigned 
not to the vertices but to the vertex mappings of the query tree. Thus each node 
represents a decision about the mapping function. The state-tree is expanded and 
traversed in the following way: 

1. Generating a label vector for every node. The label vector contains the 
counter values for the different labels related to the nodes in the 



descendant set. This vector works similar to one-grams used in the string 
distance problem. In the example shown in Figure 3a), the description 
vector for the root node is lv(3,2,1,3), where the first dimension is 
assigned to the green label, the second to the red label, the third to the 
blue label and the fourth to the black label. 

2. Calculation of the label vectors for the query tree. 
3. Selecting maximum K nodes in the base tree with the same label as the 

root of the query tree and with the first K best distance values regarding 
the label vectors. The distance value for label vectors is defined by 

d(lq,lb) = ∑j max(lqj-lbj,0) 

where lq belongs to the query tree and lb to the base tree. 
4. Loop on the selected nodes. Let w denote the vertex actually tested. Map 

the root of the query tree to w. Empty G2 and G1. 
5. Insert the mapping of w into G2. 
6. Take the element x from G2 with the lowest cost value. Move x from G2 

into G1. Disable the other mappings in G2 from x or to m(x).  
7. Test the children vertices of x considering the query tree. For every 

vertex generate the set of possible mappings. Evaluate these mappings 
and insert them into G2.  

8. If G2 is empty, the procedure terminates. The sum of cost values for the 
selected mappings is the approximation of the best mapping cost value 
for w, denoted by C(w). Go back to step 4. 

9. Return min{C(w)} as the approximation of the optimal mapping cost. 

The cost of generating the label vectors is O((Nq+Nb)M) as every vertex should be 
accessed only once. The label vector of a node can be built from the label vectors 
of its children. In the cost expression M denotes the number of different label 
values. M corresponds to the length of the label vectors. During the best-first 
search Nq vertices are tested and expanded. A vertex from the query tree may be 
mapped to O(Nb/M) vertices in average. As the best-first search is repeated by K 
times, the cost estimation for the algorithm is O((Nq+Nb)·M + K·Nq·Nb/M). Thus 
the cost is linear in both Nq and Nb. This cost is a significant reduction compared 
with the O(M·Nb! / (Nb-Nq)!) value for the brute force search method.  

4 Results 

The implementation tests show a similar linearity for the computation costs. The 
test programs are implemented in the Scilab language. The next small example 
illustrates the cost relations between the brute-force and the heuristic method. The 
base tree has 10 vertices and is shown in Figure 3a). The query tree has 4 vertices 



and is shown in Figure 3b). The number of labels is 4. The trees were generated 
randomly. 

                                    
a) base tree     b) query tree 

Figure 3 

The elements of the best mapping are given in Figure 3 with green arrows. The 
cost value is only 1. Both methods can detect this optimal mapping but with a very 
different cost value. Table 1 shows the execution cost values for the investigated 
methods related to this example query. 

Method Cost 
Brute-force 69.48 sec 
M-best-first 00.08 sec 
Selkow 02.46 sec 

Table 1 

To test the cost values for examples of larger tree sizes, a test run was 
implemented with values Nq = 12, Nb ∈ [15..500]. The cost values are shown in 
Figure 4.  

 
Figure 4 



The x-axis denotes the Nb value, while the y-axis shows the computation cost 
(where the maximum value is 3.6 sec). The trees were generated randomly. In 
Figure 4 the linearity of the cost function is well demonstrated. 

Selkow's algorithm calculates the editing distance between two forests of ordered 
trees. The measured editing distance is very similar to the editing distance of 
strings. It is simplified to a one-level comparison, so edition is necessary each 
time the root nodes are not identical. As an ordered tree is a special case of an 
unordered tree, Selkow's algorithm can be used for unordered trees as well. It is a 
basic algorithm which needs a tremendous computation power of O(N2*M2), 
where N and M are the node numbers of the trees, to find the editing order of the 
least cost. In case of unordered trees the algorithm has to take each order of the 
tree in account, so the computation cost will grow by O(2N*2M) for the repetitions 
on each possible permutation of the trees.  

The generalization of the algorithm to forests is inevitable due to the fact, that the 
algorithm is recursive and that deleting the root node of a tree will result in a 
forest. We have tested an implementation of Selkow's algorithm on small trees. 
Running our implementation of the algorithm with the trees shown on Figure 3 we 
got the editing distance of 10 units, considering 1 as the cost of each edit 
operation. The time needed to complete the calculation in the same environment 
was 2.463 sec as is shown in Table 1. Running the algorithm with randomly 
generated trees will show a very noisy cost function, however, the limits should 
show the O(N2*M2) characteristics. 

In the frame of the investigation, the proposed algorithm was compared not only 
with the brute-force method but with the method based on a wider base best-first 
searching. This algorithm allows the extension of the search tree with nodes where 
the related vertices have been already visited in some of the previous steps. The 
only restriction is to ensure the parent-child mapping direction. If m1 and m2 are 
two mapping nodes in the search tree, then m2 is a child node of m1 only if the 
corresonding vertices in the query tree own the same parent-child relationship. 
Despite this natural restriction, this method yields in a wider and larger search tree 
but can provide a better approximation. Table 2 shows some typical results of the 
comparison. 

 T P T P T P T P 
m-best-first 0.8 12 0.4 16 0.3 13 0.2 14 
base best-first  42 12  40 16  18 12  18 10 

Table 2 

Based on the results of the tests, the execution cost for the base best-first 
algorithm is about one order of magnitude larger than the cost for the porposed 
modified best-first approximation method. 

 



Conclusions 

The approximate sub-tree search for trees with edit distance metric is an NP-
complete problem. To establish a fast search engine an efficient heuristic method 
should be implemented. The proposed modified best-first method provides a 
O((Nq+Nb)·M + K·Nq·Nb/M) cost function with simple implementation details. 
According to our test results, realized with smaller trees where the brute-force 
algorithm could be tested, the yielded results are a good approximation of the 
global optimum values. Based on the results of the tests, the execution cost for the 
base best-first algorithm is about one order of magnitude larger than the cost for 
the porposed modified best-first approximation method. 

References 
[1] P. Bille: Tree Edit Distance, Alignment Distance and Inclusion, IT University 

of Copenhagen, Technical Report Series TR-2003-23, ISSN 1660-6100, 
March 2003 

[2] Barnard, Clarke, Duncan: Tree-to-Tree Correction for Document Trees, 
Technical Report 95-372, Queen’s University Canada, January 1995 

[3] Tai: The Tree-to-Tree Correction Problem, Journal of the Association for 
Computing Machinery (JACM), 26:422-433, 1979 

[4] Zhang, Shasha: Simple fast algorithms for the editing distance between trees 
and related problems, SIAM Journal of Computing, 18:1245-1262, 1989 

[5] Klein: Computing the edit-distance between unrooted ordered trees, in 
Proceedings of the 6th annual European Symposium on Algorithms (ESA) 
1998, pages 91-102, Springer Verlag 1998 

[6] Chen: New algorithm for ordered tree-to-tree correction problem, Journal of 
Algorithms, 40:135-158, 2001 

[7] Zhang, Statman, Shasha: On the editing distance between unordered labeled 
trees, Information Processing Letters, 42:133-139, 1992 

[8] Shasha, Zhang: Fast algorithms for the unit cost editing distance between 
trees, Journal of Algorithms, 11:581-621, 1990 

[9] Ukkonen: Finding approximate patterns in strings, Journal of Algorithms, 
6:132-137, 1985 

[10] Landau, Vishkin: Fast parallel and serial approximate string matching, 
Journal of Algorithms, 10:157-169, 1989 

[11] Selkow: The tree-to-tree editing problem, Information Processing Letters, 
6(6):184-186, 1977 

[12] Chawathe: Comparing hierarchical data in extended memory, in Proceedings 
of VLDB, pages 90-101, 1999 

[13] Kilpeläinen, Mannila: Ordered and unordered tree inclusion, SIAM Journal of 
Computing, 24:340-356, 1995 



[14] Kilpeläinen: Tree Matching Problems with Applications to Structured Text 
Databases, PhD Thesis, University of Helsinki, Department of Computer 
Science, 1992 

[15] Richter: A new algorithm for the ordered tree inclusion problem, in 
Proceedings of the 8th Annual Symposium on Combinatorial pattern Matching 
(CPM), in Lecture Notes of Computer Science (LNCS), volume 1264, pages 
150-166, Springer 1997 

[16] Chen: More efficient algorithm for ordered tree inclusion, Journal of 
Algorithms, 26:370-385, 1998 

[17] Matousek, Thomas: On the complexity of finding iso- and other morphisms 
for partial k-trees, Discrete Mathematics, 108:343-364, 1992 

[18] Torsello, Hancock: Computing approximate tree edit distance using relaxation 
labeling, Pattern Recognition Letters 2003, PII: S0167-8655(02)00255-6, 
2002 

[19] Bunke, Kandel: Mean and maximum common subgraph of two graphs, 
Pattern Recognition Letter 21, pp. 163-168, 2000 

[20] Barrow, Burstall: Subgraph isomorphism, matching relational structures and 
maximal cliques, Information Processing Letters 4, pp. 83-84, 1976 

[21] Pellilo et al.: Matching hierarchical structures using association graphs, IEEE 
PAMI 21, pp. 1105-1120, 1999 

[22] Wang et al.: An Algorithm for Finding the Largest Approximately Common 
Substructures of Two Trees 

[23] Khanna, Motwani, Yao: Approximation algorithms for the largest common 
subtree problem, Technical Report, Stanford University, 1995 

[24] Akutsu, Halldórsson: On the Approximation of Largest Common Subtrees 
and Largest Common Point Sets, Science Institute University of Iceland, 
October 1997 

[25] Shasha et al.: AtreeGrep – Approximate Searching in Unordered Trees, in 
Proceedings of SSDBM 2002, Edinburgh, July 2002, pp. 89-98 


