
Constraint handling in Feature Models

László Lengyel, Tihamér Levendovszky, Hassan Charaf

Budapest University of Technology and Economics, Magyar tudósok körútja. 2.

H-1111 Budapest, Hungary

lengyel@aut.bme.hu, tihamer@aut.bme.hu, hassan@aut.bme.hu

Abstract: Model transformation means converting an input model available at the

beginning of the transformation process to an output model. The paper addresses the

expressiveness issues of the graph rewriting-based topological model transformation. The

problem and its solution are discussed in this work, illustrated by a case study from the

field of Generative Programming. It is shown how metamodel-based graph rewriting

method extended with constraints can be applied to transform software models. These

constraints are specified on the meta-layer and impose restrictions on the models on the

instance layer of the rules. Dealing with these constraints facilitates a solution for the

unsolved issues, because topological and attribute transformation methods cannot perform

and express constraint validation. Handling constraints can support properties to

guarantee, preserve or validate visual model processors, and the presented approach is a

practical application of these mechanisms. The work presents the relation between the

constraints and the pre- and postconditions as well.

Keywords: Constraints, Constraint Validation, Feature Modeling, OCL, VMTS

1 Introduction

OMG’s Model Driven Architecture [1] offers a standardized framework to

separate the essential, platform independent information from the platform

dependent constructs and assumptions. A complete MDA application consists of a

definitive platform-independent model (PIM), and one or more platform-specific

models (PSM) and complete implementations, one on each platform that the

application developer decides to support. The platform independent artifacts are

mainly UML and other software models containing enough specification to

automatically generate the platform dependent artifacts by so-called model

compilers. Hence software model transformation providing a basis for model

compilers in general lies at the heart of the MDA architecture.

To illustrate the techniques of constraint validation a case study is provided from

the field of generative programming. It is applied in the fields where the target

domain of the software development can be treated, conceived and captured as

one model set with optional, exclusive and inclusive construct. The first step of

capturing the whole domain is the method called feature modeling [2]. Instead of

addressing only the part of the domain which is directly relevant to the application

to be developed, we model the whole domain for a forthcoming set of application

which are generated on demand. This model contains all the possible result of the

engineering process thus including the reusability design of the application set.

The next steps are to create the generators and the software components for the

generators. On the one hand we need large effort to create generators, but the

software creation with generators is flexible and safe method [3] on the other

hand.

Software modeling is a synonym for producing diagrams. Most models consist of

a number of "nodes and edges" pictures and some accompanying text. The

information conveyed by such a model has a tendency to be incomplete,

imprecise, and sometimes even inconsistent. A feature diagram or a UML

diagram, such as a class diagram, is typically not refined enough to provide all the

relevant aspects of a specification. There is, among other things, a need to describe

additional constraints about the objects in the model. Such constraints are often

described in natural language. Practice has shown that this will always result in

ambiguities. In order to write unambiguous constraints, so-called formal

languages have been developed. The disadvantage of traditional formal languages

is that they are usable to persons with a strong mathematical background, but

difficult for the average business or system modeler to use. Object Constraint

Language (OCL) [4] is a formal language that remains easy to read and write.

To fully specify models and generators we assign constraints to model elements

and to the steps accomplished by generators. The help of these constraints we get

precise and consistent feature models and generator steps.

The rest of this paper is organized as follows: in the next section the backgrounds

and the motivation are described, which is followed by the contributions: (i) we

shortly introduce our implementation, the VMTS [5] [6], then (ii) the concepts of

constraint validation is presented, and (iii) the feature model normalization with

the help of constraints is discussed. Finally conclusions and future work are

delineated.

2 Backgrounds and Motivation

Feature modeling is particularly important if one engineers for reuse. The reason

is that reusable software contains inherently more variability than concrete

applications and feature modeling is the key technique for identifying and

capturing variability. Feature modeling helps us to avoid two serious problems: (i)

relevant features and variation points are not included in the reusable software,

(ii) many features and variation points are included but never used and thus cause

unnecessary complexity, development cost, and maintenance cost.

Besides this, the feature models produced during the feature modeling activities

provide us with an abstract (since implementation independent), concise, and

explicit representation of the variability present in the software.

Following the conceptual modeling perspective, a feature is an important property

of a concept. Features allow us to express the commonalities and differences

between concept instances. They are fundamental to formulating concise

descriptions of concepts with large degrees of variation among their instances.

Organized in feature diagrams, they express the configurability aspect of concepts.

Features are primarily used in order to discriminate between instances (and thus

between choices). In this context, the quality of a feature is related to properties

such as its primitiveness, generality, and independency. Feature modeling is the

activity of modeling the common and the variable properties of concepts and their

interdependencies and organizing them into a coherent model referred to as a

feature model. It is important to note that feature modeling is a creative activity. It

is much more than just a simple rehash of the features of existing systems and the

available domain knowledge. For example, one technique used in feature

modeling is the analysis of combinations of variable features, which may lead to

the discovery of innovative feature combinations and new features. The systematic

organization of existing knowledge allows us to invent new, useful features and

feature combinations more easily.

Often we need to specify a model more precisely than a modeling language

enables it. It is a common case that we want to define expressions and constraints

on our model. The Object Constraint Language (OCL) [4] is a formal language for

analysis and design of software systems. It is a subset of the industry standard

Unified Modeling Language (UML) [7] that allows software developers to write

constraints and queries over object models. A constraint is a restriction on one or

more values of an object-oriented model or system. There are four types of

constraints: (i) An invariant is a constraint that states a condition that must always

be met by all instances of the class, type, or interface. (ii) A precondition to an

operation is a restriction that must be true at the moment that the operation is

going to be executed. The obligations are specified by postconditions. (iii) A

postcondition to an operation is a restriction that must be true at the moment that

the operation has just ended its execution. (iv) A guard is a constraint that must be

true before a state transition fires. Besides these, OCL can be used as a navigation

language as well.

Graph rewriting [8] is a powerful tool for graph transformations with strong

mathematical background. The atoms of graph transformation are rewriting rules,

each rewriting rule consists of a left hand side graph (LHS) and right hand side

graph (RHS). Applying a graph rewriting rule means finding an isomorphic

occurrence (match) of the LHS in the graph the rule being applied to (host graph),

and replacing this subgraph with RHS. Replacing means removing elements

which are in the LHS but not in the RHS, and gluing elements which are in the

RHS but not in the LHS.

The motivation of this research was to work out a method that facilitates to assign

constraints to software models (i) which have an affect on the model

transformation, and (ii) specifies more precisely the source code and application

generation based on these models achieved by generators. For constraint

specification we choused the OCL. The paper introduces the constraint handling

via an illustrative case study.

3 Contribution

Our implementation is called Visual Modeling and Transformation System

(VMTS) [5] [6], which is an n-layer multipurpose modeling and metamodel-based

transformation system. The system architecture of the VMTS is depicted in Figure

1. The user interfaces (Adaptive Modeler, Rule Editor) are functionally separated

from the model storage unit (AGSI Core - Attributed Graph Architecture

Supporting Inheritance) which uses an RDBMS to store the model information.

The model transformation can be accomplished by Traversing Model Processors

[9], Rewriting Engine and Other Applications. The AGSI Core exposes its

interface to any other applications which may use other technique to process AGSI

data. Using this environment it is easy to edit metamodels, design models

according to their metamodels, transform models using graph rewriting [3] [6] [9],

and validate metamodel and rewriting rule containing constraints. The main

contribution of this section is to present the constraint validation process.

Figure 1. VMTS System Architecture

3.1 Constraint validation

In this section we introduce the relation between the pre- and postconditions as

well as the OCL constraints assigned to the rewriting rules. Besides this the type

of the constraints we enlist in the LHS and RHS graphs of the rewriting rule is

also presented.

 A precondition (postcondition) assigned to a rewriting rule is a boolean

expression that must be true at the moment when the rewriting rule is fired (after

the completion of a rewriting rule). If a precondition of a rewriting rule is not true

then the rewriting rule fails without being fired. If a postcondition of a rewriting

rule is not true after the execution of the rewriting rule then the rewriting rule fails.

A direct corollary of this is that an OCL expression in LHS is a precondition to the

rewriting rule, and an OCL expression in RHS is a postcondition to the rewriting

rule. A rewriting rule can be fired if and only if all conditions enlisted in LHS are

true. Also, if a rewriting rule finished successfully then all conditions enlisted in

RHS must be true.

There are three properties: validation, preservation, and guarantee, which are

checked during the rewriting process. A transformation step S validates a property

P, when the following condition always holds: if a property P was true before the

step S it remains true after the execution of the step S, and if P is false, the step S

fails. A step S preserves a property P, when the following condition always holds:

if a property P was false (true) before the step S it remains false (true) after the

execution of the step S. A transformation step S guarantees a property P, when the

following condition always holds: if a property P was true before the step S it

remains true after the execution of the step S, and if P is false, the step S changes

property P to true. Table 1 summarizes the meaning of these properties.

 property P before the step S property P after the step S

true true Validation

false step S fails

true true Preservation

false false

true true Guarantee

false true

Table 1. Truth table of the validation, preservation and guarantee properties

Based on these properties we can introduce the concepts of the general validation,

general preservation and general guarantee. (i) A step S validates a property P for

an input model M if the property P is enlisted in both pre- and postconditions of

the step S, and the step S has been executed successfully for the model M. (ii) A

step S preserves a property P for an input model M if the expression (NOT P or

P@pre) and (P or NOT P@pre) is enlisted as an OCL expression in

postconditions of the step S, and the step S has been executed successfully for the

model M. (Where x@pre means the value of x immediately before the step was

fired even if the value of x has not changed.) (iii) A step S guarantees a property P

for an input model M if the property P is enlisted in postconditions of the step S,

and the step S has been executed successfully for the model M.

3.2 Feature model normalization with the help of constraints

Our case study is a part of the feature model driven scenario, namely, to transform

feature models in a canonical and application specific form, such that it can be fed

to the generator directly. Here we want to illustrate how VMTS validates the

constraints during the transformation.

The metamodel of feature diagram is shown in Figure 2. This metamodel enforces

the followings: a node can be a root node (so-called concept) or a child. A node

can have either XOR (alternative) or OR connector (denoted by arcs). Either via

these connectors or directly a child can connect to a node of any type (Root or

Child).

Figure 2. Feature diagram metamodel

A feature model represents the common and the variable features of concept

instances and the dependencies between the variable features. We distinguish

between mandatory, alternative (xor), and optional features [2]. In addition to

these feature types, we also introduce or-features. Furthermore, optionality can be

combined with alternative features and with or-features resulting in the two

additional feature types optional alternative features and optional or-features.

However, as it is illustrated later, the optional or-feature type is equivalent to the

optional feature type and thus it is redundant. As an example Figure 3 presents a

feature model of a car.

Figure 3. Feature model of a car

A mandatory feature is included in the description of a concept instance if and

only if its parent is included in the description of the concept. In Figure 3 the car-

body and engine are mandatory features – every car has car-body and engine. An

optional feature may be included in the description of a concept instance if and

only if its parent is included in the description. Music player, airbag and 4WD

(four wheel drive) are optional features – in a car there is a music player or not. A

concept may have one or more sets of direct alternative features (xor-features).

Electric, petrol and gas are xor-features. If the parent of a set of alternative

features is included in the description of a concept instance, then exactly one

feature from this set of xor-features is included in the description. A concept may

have one or more sets of direct or-features. CD and cassette are or-features. If the

parent of a set of or-features is included in the description of a concept instance,

then any non-empty subset from the set of or-features is included in the

description. Figure 3 represents that a car has a CD player or a cassette player or

both of them.

Figure 4. Normalization step 1: If one or more of the features in a set of xor-features are

optional, this has the same effect as if all the alternative features in this set were optional.

A node in a feature diagram can have mandatory feature subnodes, optional

feature subnodes, xor-feature subnodes, optional xor-feature subnodes, or-feature

subnodes, and optional or-feature subnodes. During the feature model

normalization we examine the optional xor-feature nodes and optional or-feature

nodes.

The Figure 4 reveals the first normalization steps, it describes that a feature

diagram with one optional xor-feature can be normalized into a diagram with any

optional xor-features. This rewriting rule does not change the topology, but

updates the feature attributes.

The following constraint-pair facilitates that optional xor-features do not alter

during the normalization. This constraint-pair describes a validation property. The

first part of the constraint-pair is the precondition, it is enlisted in the LHS graph,

and the second part of the constraint-pair is the postcondition, and it is enlisted in

the RHS graph:

context edge inv norm_const_1_LHS:

self.end = optional and self.sourceFeature.type = 'xor-feature'

context edge inv norm_const_1_RHS:

self.end = optional and self.sourceFeature.type = 'xor-feature'

Mandatory xor-features are normalized into optional xor-features, this is a

guarantee property:

context edge inv norm_const_2_LHS:

self.end = mandatory and self.sourceFeature.type = 'xor-feature'

context edge inv norm_const_2_RHS:

self.end = optional and self.sourceFeature.type = 'xor-feature'

Figure 5. Normalization step 2: A feature with at least one optional child or-feature can be

normalized into optional child features.

Figure 5 presents the second normalization step: if one or more of the features in a

set of or-features is optional, it has the same effect as if all the features in this set

were optional or-features. Therefore, if one or more features in a set of or-features

is optional, we can replace all these features by optional features. In conclusion

the category of optional or-features is redundant since it is equivalent to optional

features.

Optional or-features are normalized into optional features, this is a guarantee

property:

context edge inv norm_const_3_LHS:

self.end = optional and self.sourceFeature.type = 'or-feature'

context edge inv norm_const_3_RHS:

self.end = optional and self.sourceFeature.type = 'feature'

Mandatory or-features normalizes into optional features, this is a guarantee

property:

context edge inv norm_const_4_LHS:

self.end = mandatory and self.sourceFeature.type = 'or-feature'

context edge inv norm_const_4_RHS:

self.end = optional and self.sourceFeature.type = 'feature'

Any feature diagram can be transformed into a feature diagram which does not

have any optional or-features and whose sets of alternative features may contain

either only alternative features or only alternative optional features. The

transformation can be accomplished by the presented normalization steps. The

resulting feature diagram is a normalized feature diagram, which is equivalent to

the original feature diagram. Figure 6 presents the normalized feature model of the

car depicted in Figure 3.

Figure 6. Normalized feature model of a car

In Figure 4 and Figure 5 the normalization steps are rewriting rules built from the

metamodel elements presented in Figure 2.

3.3 Constraint handling

Feature models contain not only mandatory and variable features, but also

dependencies between variable features. These dependencies are expressed in the

form of constraints and default dependency rules. Constraints specify valid and

invalid feature combinations. Default dependency rules suggest default values for

unspecified parameters based on other parameters.

Constraints and default dependency rules allow us to implement automatic

configuration. For example, in addition to our feature diagram of a car (Figure 3),

we could also have an extra feature diagram defining the three high-level

alternative features of a car: classic, sport, and overland. Furthermore we could

have the following vertical default dependency rules relating the three high level

features and the variable detail features from: (i) classic implies electric engine

and cassette music player; (ii) sport implies petrol engine, CD music player and

airbag; (iii) 4WD implies petrol engine, CD music player and 4WD. An example

constraint that implies that if a car is overland then contains 4WD (otherwise it

does not) is the following:

context car inv car_type_overland:

if car.type = ‘overland’ then

car.is4WD = true

else

car.is4WD = false

endif

Given these default dependency rules, we can specify a car with all extras as

follows: overland and airbag.

Our approach, VMTS does not interpret the constraints, but it automatically

generates source code based on the constraints and compiles it to a binary which

validates the metamodel and rewriting rule containing constraints. The LHS graph

of the first normalization step (rewriting rule) in Figure 4 contains the following

constraint:

context XOR_F3_Edge inv endCheckLHS:

self.end = mandatory

The constraint in the RHS graph:

context XOR_F3_Edge inv endCheckRHS:

self.end = optional

Based on the constraints the aim of the rewriting rule (normalization step) is to

change the value of end properties. VMTS Compiler generates checking code

based on these OCL constraints and compiles it to a binary. The VMTS Validation

Module checks the matched subgraph against the LHS graph containing

constraints, and checks the result of the rewriting by the RHS graph containing

constraints. Code list 1 contains a part of the generated C# code which validates

the above presented, RHS graph containing constraint.

public class XOR_F3_Edge : OclRuntime.UML_OCL.OCLOclAny,
OclRuntime.ConstraintChecker {
 public virtual string TypeName {
 get { return "XOR_F3_Edge";}

 }
 public virtual OclRuntime.OclResult

CheckConstraint_INV_endCheckRHS(OclRuntime.OCLModelType self) {
 OclRuntime.OclResult _res = new

OclRuntime.OclResult("XOR_F3_Edge", "endCheckRHS", self.InstanceId);
 _res.Result =

((bool)(((OclRuntime.UML_OCL.OCLBoolean)(new
OclExpression_2(self).Value))));

 return _res;
 }

 public class OclExpression_2 :
OclRuntime.UML_OCL.OCLOclExpression {
 private OclRuntime.OCLModelType self;
 public OclExpression_2(OclRuntime.OCLModelType self) {
 this.self = self;
 }
 protected override OclRuntime.UML_OCL.OCLOclAny
GetEvaluatedValue() {
 return
((OclRuntime.UML_OCL.OCLString)(self.GetPropertyValue("end"))).opGT(n
ew OclRuntime.UML_OCL.OCLString("optional"));
 }
 }

 }

Code list 1. Example generated validation code

Conclusions and Future work

In this paper a summary of the constraint handling in feature models is provided.

It has been shown that metamodel-based graph rewriting method can be applied to

normalize feature diagrams. Without dealing with OCL constraints this problem

could not have been solved, because topological and attribute transformation

methods cannot perform and express the type of the constraint validation

demanded by the normalization process. Besides this the paper discussed the

relation between the constraints and the pre- and postconditions, and the validation

of rewriting rule containing constraints during the graph transformation process.

One of the most important part of the method that our constraint checking

approach does not interpret the constraints; we generate source code and compile

it to a binary which validates the metamodel and rewriting rule containing

constraints.

Future work includes the optimization of the current implementation, and the

design and implementation of branch conditions. With the help of branch

conditions VMTS will support that a rewriting rules can have not only one but

optional number of RHS graphs. The result of a LHS graph containing constraint

checking will decide which RHS graph will be used. It is similar to a switch-case

structure where a constraint plays the role of the switch and RHS graphs are the

case branches. Furthermore we will implement a module which handles

constraint-pairs. The module will be able to determine the property type

(validation, preservation, and guarantee) of a constraint-pair, and it will help if

one would like to write a constraint-pair with arbitrary property type.

References

[1] MDA Guide Version 1.0.1, OMG, doc. number: omg/2003-06-01, 12th June

2003 www.omg.org/docs/omg/03-06-01.pdf

[2] Czarnecki et al.: Generative programming: methods, tools, and applications

(Addison-Wesley, 2000)

[3] Levendovszky T., Lengyel L., Charaf H., Software Composition with a

Multipurpose Modeling and Model Transformation Framework, IASTED 2004,

Innsbruck, 2004, pp.590-594

[4] Object Constraint Language Spec. (OCL), www.omg.org

[5] Visual Modeling and Transformation System Web Site

http://avalon.aut.bme.hu/~tihamer/research/vmts/.

[6] Levendovszky T., Lengyel L., Mezei G., Charaf H., A Systematic Approach

to Metamodeling Environments and Model Transformation Systems in VMTS,

International Workshop on Graph-Based Tools (GraBaTs) Electronic Notes in

Theoretical Computer Science, Rome, 2004

[7] UML 2.0 Specifications, http://www.omg.org/uml/

[8] G. Rozenberg (ed.), Handbook on Graph Grammars and Computing by Graph

Transformation: Foundations, Vol.1 World Scientific, Singapore, 1997.

[9] Levendovszky T., Lengyel L., Charaf H., Implementing a Metamodel-Based

Model Transformation System, Buletinul Stiintific al Universitatii "Politehnica"

din Timisoara, ROMANIA Seria AUTOMATICA si CALCULATOARE

PERIODICA POLITECHNICA, Transactions on AUTOMATIC CONTROL and

COMPUTER SCIENCE Vol.49 (63), 2004, ISSN 1224-600X

