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Abstract: General non-additive measures are investigated with the help of some

related monotone measures (some types of variations and submeasures), which have

some important additional properties.
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1 Introduction

Non-additive set functions, as for example outer measures, semi-variations of

vector measures, appeared naturally earlier in the classical measure theory con-

cerning countable additive set functions or more general �nite additive set func-

tions. The pioneer in the theory of non-additive set functions was G.Choquet

[2] from 1953 with his theory of capacities. This theory had in
uences on many

parts of mathematics and di�erent areas of sciences and technique.

Non-additive set functions are extensively used in the decision theory, math-

ematical economy, social choice problems, with early traces by Aumann and

Shaplay in their monograph [1]. Recently, many authors have investigated

di�erent kinds of non-additive set functions, as subadditive and superadditive

set functions, submeasures, k-triangular set functions, t-conorm and pseudo-

addition decomposable measures, null-additive set functions , and many other

types of set functions. Although in many results the monotonicity of the ob-

served set functions was supposed, there are some results concerning also some

classes of set functions which include also non-monotone set functions (for ex-

ample superadditive set functions, k-triangular set functions).

On the other hand, fuzzy measures as monotone and continuous set func-

tions were investigated by Sugeno [17] in 1974 with the purpose to evaluate

non-additive quantity in systems engineering.This notion of fuzziness is di�er-

ent from the one given by Zadeh.Namely, instead of taking membership grades

of a set, we take (in the fuzzy measure approach) the measure that a given

unlocated element belongs to a set. There are many di�erent type of fuzzy

measures which are used . For example belief, possibility, decomposable mea-

sures. Specially in di�erent branches of mathematics there are many types of

non-additive set functions. They appeared in the potential theory, harmonic



analysis, fractal geometry, functional analysis, theory of nonlinear di�erential

equations, theory of di�erence equations and optimizations. There are many

di�erent �elds in which the interest on non-additive set functions is growing up.

In the theory of the arti�cial intelligence, belief functions have been applied to

model uncertainty. Belief functions, corresponding plausibility measures and

other kinds of non-additive set functions are used in statistics. Non-additive

expected utility theory has been applied for example in multi-stage decision

and economics. Many aggregation operators are based on integrals related

to non-additive measures [9, 10, 12]. We can compare additive set functions

(which are base for the classical measure theory) and non-additive set func-

tions in the following simple way. For a �xed set A 2 � the classical measure

� : �! [0;+1] gives that for every set B from � such that A\B = ; we have

that �(A[B)��(B) is always equal to a constant �(A); i.e., it is independent of

B: In contrast, for non-additive set function m the di�erence m(A[B)�m(B)

depends on B and can be interpreted as the e�ect of A joining B:

In this paper we will correspond to every set function ([1, 2, 13, 14, 15, 17,

18]) special positive set functions with some additional properties. Motivated

by the notion of the variation of the classical measure ([15, 16]) we introduce

axiomatically the notion of the variation of the general set function and prove

that it always exists, but in general case it is not unique. One of them so called

disjoint variation is based on the partition of the set and the other so called

chain variation is based on the chains of sets, see [1, 4, 14]. In this paper we

will prove that these variations have some additional properties with respect

to the starting non-additive set function. Among others that disjoint variation

is superadditive on any family of disjoint sets, see [14].

2 Variations

We start with some results from the classical measure theory. Let � be a �-

algebra of subsets of the given set X: A set function � : � ! R is additive

(signed �nitely additive measure) if we have

�(A [B) = �(A) + �(B)

for all A;B 2 � with A \ B = ?: A set function � : � ! R is ��additive

(signed measure) if we have

�

 
1[
i=1

Ei

!
=

1X
i=1

�(Ei)

for all pairwise disjoint sequences fEig from �; i.e., En \ Em = ? for n 6= m:

For an arbitrary but �xed subset A of X and an additive set function � its

variation � is de�ned by

�(A) = sup
I

X
i2I

j �(Di) j;



where the supremum is taken over all �nite families fDigi2I of pairwise disjoint

sets of � such that [i2IDi = A: It is well-known that if � : � ! R is �nitely

(or countable) additive the � is �nitely (countable) additive. If � is signed

additive set function then � is countable additive if and only if � is countable

additive.

We consider now general set functions m; m : D ! [�1;+1]; with

m(?) = 0 (extended real-valued set function), see [14], where D denote a

family of subsets of a set X with ? 2 D: m is (�nite) real-valued set function

if �1 < m(A) < +1 for all A 2 D; and m is monotone if A � B implies

m(A) � m(B) for every A;B 2 D: m is non-negative if it is �nite andm(A) � 0

for all A 2 D; and m : D ! [0;+1] is positive.

We introduce for an arbitrary set function axiomatically a generalization of

the variation.

De�nition 1 Let m be a set function de�ned on D with values in R (or

[0;+1]); with m(?) = 0: Then variation of m is a set function � : D ! [0;+1]

with the following properties:

(i) For every A � X we have

0 � �(A) � +1;

(ii) �(?) = 0;

(iii) j m(A) j� �(A) (A 2 D);

(iv) � is monotone, i.e., if B � A; then �(B) � �(A);

(v) �(A) = 0 if and only if m(B) = 0 for every subset B of A from D:

We easily obtain: For every A � X we have

�(A) � supfj m(B) j: B � A; B 2 Dg:

Namely, if B is a arbitrary subset of A which belongs to D we have by the

properties (iv) and (iii)

�(A) � �(B) �j m(B) j :

3 The existence of variations

Theorem 1 For every set function m de�ned on D and with values in R (or

[0;+1]); with m(?) = 0; always exists its variation, which in general case is

not uniquely determined.

We introduce two special set functions related to a given set function m which

are base for the proof of the preceding theorem.

De�nition 2 For an arbitrary but �xed subset A of X and a set function m

we de�ne the disjoint variation m by

m(A) = sup
I

X
i2I

j m(Di) j; (1)



where the supremum is taken over all �nite families fDigi2I of pairwise disjoint

sets of D such that Di � A (i 2 I):

De�nition 3 For an arbitrary but �xed A 2 D and a set function m we de�ne

the chain variation j m j by

j m j (A) = supf

nX
i=1

j m(Ai)�m(Ai�1) j:

? = A0 � A1 � � � � � An = A;Ai 2 D; i = 1; : : : ; ng: (2)

We remark that the supremum in the previous de�nition is taken over all �nite

chains between ? and A:

Remark 1 (i) If D is an algebra, then we can take for A 2 D in (1) the

supremum for all �nite families fDigi2I of disjoint sets such that
S
i2I

Di = A:

(ii) We note that the variation m given by (1) is de�ned on P(X):

Let D be a ring. A set function m : D ! R is superadditive if for every

A;B 2 D with A \ B = ? we have m(A [ B) � m(A) + m(B); and it is

subadditive if for every A;B 2 D with A \ B = ? we have m(A [ B) �

m(A) +m(B):

Theorem 2 Let m be a set function de�ned on � with values in R (or [0;+1]);

with m(?) = 0: Then the set function m given by (1) is superadditive, i.e.,

X
i2I

m(Ei) � m

 [
i2I

Ei

!

for each family fEigi2I of disjoint sets of X:

Open problem: Find all variations of a given arbitrary set function m:

We shall give a partial answer on this problem, when we require some

additional properties of the variation.

Theorem 3 Let m be a set function de�ned on � with values in R (or [0;+1]);

with m(?) = 0: Then m given by (1) is the smallest variation of m (de�ned on

P(X)) which is superadditive.

4 Submeasures

For non-negative monotone set function m with an additional topological prop-

erty we can correspond a submeasure � (monotone and subadditive set func-

tion) which is closely topologically connected with m; see for more details

[6, 7, 13, 14].



Theorem 4 Let D be a ring and m : D ! [0;1) be monotone. Then there

exists a submeasure � on D such that

m(En)! 0, �(En)! 0;

if and only if m satis�es the following condition:

(ac) m(An) +m(Bn)! 0; then m(An [Bn)! 0:
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