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Abstract: The paper presents development and tuning solutions for conventional and 
Takagi-Sugeno fuzzy controllers with dynamics of PI and PID type meant for electrical 
driving systems.Two control structures with homogenous and with non-homogenous 
information processing with respect to the inputs are presented including optimization aspects. 
Then Takagi-Sugeno fuzzy models dedicated to a class of plants characterized by Two 
Input-Single Output linear time-varying systems are presented. It is offered a stability test 
algorithm of the fuzzy control systems involving Takagi-Sugeno fuzzy controllers to control 
the accepted class of plants. The tuning methods are briefly presented in relation with a 
control solution for a drive system with a variable inertia strip winding system. 

Keywords: Takagi-Sugeno fuzzy models, Takagi-Sugeno fuzzy controllers, stability 
analysis, winding system. 

1 Introduction 

Take the class of plants (P) having the transfer functions expressed as: 
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The parametres kP (constant or variable) and TΣ < T2 <(<<) T1 characterize well 
enough many control applications with electrical drives (as controlled plants) [1],[2]. 

The paper aim is to develop Takagi-Sugeno (TS) fuzzy controllers (FCs) based on 
classical development methods, meant for controlling electrical drives with linear 
time-varying (LTV) parameters (benchmarks, (1) and (2)). LTV systems may result 

 



of linearized nonlinear systems in the vicinity of a set of operating points or of a 
trajectory. 

These features determine the wide application area of TS fuzzy models in spite of 
their drawbacks such as: - the behavior of the global TS fuzzy model can 
significantly divert from the expected behavior obtained by the merge of the local 
models; - the stability analysis and testing of fuzzy control systems based on TS 
fuzzy models is relatively difficult because of the complex aggregation of the 
local models in the inference engine.  

Firstly, the paper presents shortly the use of classical development procedure for 
PI(D) controllers (Section 2). Then, a class of TS models for Two Input-Single 
Output (TISO) LTV plants is presented (Section 3). In Section 4 there are defined 
the TS fuzzy controllers meant for controlling the TS fuzzy models. Based on 
these is presented a stability test algorithm (based on Lyapunov’s stability theory) 
for a class of fuzzy systems with TS fuzzy controllers controlling the TISO LTV 
plants (Section 5). Results concerning the development of conventional and fuzzy 
control solutions for a drive system with two output coupled motors applicable to 
the rolls of a hot rolling mill and to a variable inertia strip winding system are 
presented in Section 6. Section 7 is focused on the concluding part of the paper. 

2 Development of Continuously and Quasi-
Continuously Operating PI(D) Control Algorithms 

Many control applications prefer structures with typical control algorithms with 
homogenous or non-homogenous information processing on the two input 
channels [1]. Such structures have the general form given in Fig.2.1-a -b and -c 
presents some particular control laws regarding the inputs. There can be 
established relations between such controllers and the 2-DOF controllers [3]. The 
blocks (1) ... (5) can be described by its specific transfer functions (t.f.s). 

 
Fig.2.1. Typical controller structures and particularizations regarding the modules. 

In the presence of an integral (I) component and a limitation block in the 
controller structure, the use of the AWR measure (Anti-Windup-Reset) will be 
recommended. The transfer functions of the continuous PI(D) controllers are 
written related to the design procedure and the implementation (discretization) 
procedure; some well-known forms are: 
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The implementation of a quasi-continuously (QC) operating PID digital control 
algorithm can be based on the informational diagram presented in Fig.2.2; the 
appearance of a supplementary state variables xk, is associated to the I component 
and the adding of the AWR measure. The parameter values {Kpid, Ki ,Kd ,Karw} 
depend on the continuous parameters {kr, Tr, Tr’} and on the sampling time value, 
Te [4]. 

 
Fig.2.2. A quasi-continuously operating PID digital control algorithm implementation. 

The implementation of non-homogenous information processing (Fig.2.1-c) has 
two requirements [5]: - an I or PI behavior with respect to the reference channel; - 
a PI or PID behavior with respect to the feedback channel. The non-homogenous 
information processing structure respects the following informations (Table 2.1). 

Table 2.1. Transfer functions of blocks in Fig.2.1-c 

Case Channel Block 3 Block 4 Block 5 Type 
w I:  (1/sTi) ---- P:    (kR) I:  (1/sTi) (1) y I:    (1/sTi) P:    (1) P:    (kR) PI:  (1+1/sTi) 
w PI:  (1+1/sTi) ---- P:    (kR) PI: (1+1/sTi) (2) y PI:  (1+1/sTi) D:   (sTd) P:    (kR) PID 

The parameters can be calculated using the relations synthetised in Table 2.2. The 
parameter β belongs usually to the domain 4 ≤ β ≤ 16. 

3 A Class of Takagi-Sugeno Fuzzy Models 
The following Takagi-Sugeno fuzzy model to represent a TISO LTV system will 
be used that models the controlled plant [7]: 
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Table 2.2. Tuning relations after [2], [5],[6] 
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Identical with the case of PI 
controller tuning rel. and  
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where: u(s), v(s), y(s) - the Laplace transform of the plant input (the control signal) 
u(t), of the disturbance input v(t) and of the controlled output y(t); m – the number 
of inference rules; Rl – the lth inference rule, l = 1 … m; n – the number of 
measurable plant (system) variables pointing out the time-variation of the plant; 
zi(t) – the measurable plant variables, i = 1 … n,  and: 

 T
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Fl – the linguistic terms associated to the measurable variable zi(t) and to the rule 
Rl; )(, sH u

lP  and )(, sH v
lP  – the local t.f.s of the plant. 

The TS fuzzy model (3.1) includs both the inference rules as part of the rule base 
and the local analytic models of the TISO LTV system. The controlled output is 
inferred by taking the weighted average of all local models appearing in (3.1), 
which characterizes the properties of the controlled plant in a local region of the 
input space; so it is referred to as fuzzy dynamic local model [7],[8]. The 
following notation is introduced: 

 mltt ll !1  )),(()( =µ=µ z ,               (3.3) 

for the membership degrees of the normalized membership functions μl of the 
inferred fuzzy set Fl, where: 
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By using the product inference method in (3.4) (b) and the weighted average 
method for defuzzification, the TS fuzzy model (3.1) can be expressed in terms of 
the following fuzzy dynamic global model that can be considered as TS fuzzy 
model of the plant: 
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The model (3.5) is LTV system because the inferred transfer functions, )(sH u
P  

and )(sH v
P , have time-varying coefficients. 

4 Takagi-Sugeno Fuzzy Controllers. Closed-Loop 
System Models 

The TS fuzzy models (3.1) or (3.5) could be very useful in comparison with other 
conventional techniques in nonlinear control. This is the case of piecewise 
linearization [8], where the plant is linearized around a nominal operating point, 
and there are applied linear control techniques to the controller development. This 
approach divides the input space into crisp subspaces, and the result is in a non-
smooth connection of the linear subsystems to build the closed-loop system 
model. These models are based on the division of the input space into fuzzy 
subspaces and use linear local models in each subspace. Furthermore, the fuzzy 
sets l

iF  and the inference method permit the smooth connection of the local 
models to build the fuzzy dynamic global model of the closed-loop system. 

To control the TISO LTV plant (3.5) there is proposed a TS fuzzy controller with 
the following model: 
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where e(s) is the Laplace transform of the control error )()()( tytrte −= ; r(t) is 
the reference input; )(, sH lC  – the t.f. of the local controllers, l = 1 … m. 

The local controllers in (4.1) are developed for the local analytic models in (3.1) 
by parallel distributed compensation [9]. By the feedback connection of the plant 
(3.1) and of the fuzzy controller (4.1) in terms of the conventional control 
structure presented in Fig.4.1, the closed-loop system can be described by the 
following fuzzy dynamic local model: 
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where )(, sH lr  and )(, sH lv  - the local t.f.s of the closed-loop system, l = 1 … m. 

 
Fig.4.1. Control system structure. 

In the conditions (3.3) … (3.5), by accepting the same inference method and 
defuzzification method as in the previous Section, the fuzzy dynamic global 
model of the closed-loop system can be expressed in terms of (4.3): 
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where the inferred t.f.s Hr(s) and Hv(s) have time-varying coefficients. It is 
justified to consider the TS fuzzy model (4.3) as TISO LTV system; for its 
analysis there can be applied methods specific to LTV systems [7] … [9] which 
require numerical techniques for the calculation of Hr(s) and Hv(s). 

For the development of the fuzzy controllers it is necessary to perform the stability 
analysis and testing; a stability analysis test algorithm for the closed-loop system 
(4.3) are presented in the next Section. 

5 Stability Test Algorithm 
To perform the stability analysis of the fuzzy control systems two approaches can 
be employed: the first one, based on the use of the fuzzy dynamic global model 
(4.3) and the second one can be developed by starting with the definition of a 
piecewise smooth quadratic Lyapunov function [10], based on the fuzzy dynamic 
local model (4.2). 

In the case of the system (4.2) there can be used several approaches based on 
either transferring the ideas from hybrid systems [8] or by using, since this system 
can be considered as a variable structure one with possible discontinuous right-
hand side, stability analysis methods dedicated to variable structure systems [11]. 

For the stability analysis and testing of the fuzzy control system modeled by the 
fuzzy dynamic global model (4.3) it will be presented as follows the first 
approach, based on the Lyapunov stability theory in terms of the definition of a 
piecewise smooth quadratic Lyapunov function V: 
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where x – the state vector, dim x = (1, nS), Pl – positive definite symmetric 
matrices, dim Pl = (nS, nS), ql – weighting coefficients ensuring the smoothness of 
the function V, l = 1 … m, nS – system order. The matrices Pl are obtained by 
ensuring the negative definiteness of the derivative of the Lyapunov function. This 
can be ensured by solving the algebraic Riccati equations (5.2): 
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with Ql – positive definite symmetric matrices, dim Ql = (nS, nS), and Al – the 
system matrices in the systemic realizations corresponding to the closed-loop 
transfer functions )(, sH lr  and )(, sH lv , dim Al = (nS, nS). 

The stability analysis test algorithm consists in four steps, detailed in [atqr]. The 
solving of the algebraic Riccati equations (5.2) and the required analysis requires 
the largest computational effort. 

6 Application: Winding System Control Solution 
The winding process has variable inertia (Variable Inertia Drive System, VIDS) 
and the reference input must be correlated with the modification of work roll 
radius, Fig.6.1-a and –b [11]. In this context two basic aspects occur at the 
development of the control structure: the modification of the reference input (ω), 
and tuning the controller parameters. 

For the first one, the condition (6.1) must be fulfilled by the control solution: 

v(t) = const   →   ωo(t) = k/R(t),                (6.1) 

where by the measurement of R(t) there can be ensured the continuous modification 
of the reference input ωo(t). 

(a) (b) 
Fig.6.1. Functional diagram of VIDS and reference input correction system. 

The problem of controlling the speed of the winding system can be solved in various  
ways: by the use of a cascade control structure with two, current and speed, 
controllers, or by the use of a state feedback control structure. For both versions, the 
variance of the moment of inertia, according to (6.2): 

J(t) = (1/2) ρ  π  l R4(t),                 (6.2) 



requires much attention in the controller design. In this paper will be presented a  
solutions based on control loops with linear PI and PI-fuzzy controllers with 
parameter adaptation. 

The state-space mathematical model of VIDS has the state variables {x1=ia, x2=ωm, 
x3=ft},  and a corresponding informational block diagram given in Fig.6.2 [11]. 

    x1’(t)=–(Ra/La)x1(t)–(ke/La)x2(t)+(kch/La)uc(t) , 

    x2’(t)=(km/Je(t))x1(t)–(1/Je(t))mf(x2(t))–(rt(t)/Je(t))x3(t))–(1/Je(t))(Je’(t))rt(t), 

    x3’(t)=cbrt(t)x2(t)–cbvs(t) .                 (6.3) 

 
Fig.6.2. Informational block diagram of VIDS. 

Linearizing the models in some representive functional points, mathematical 
models (benchmark t.f.s) in form of (1.1) and (1.2) will be obtained. 

Concerning the local linearized plant models (1.1), (1.2) the speed controller design 
is based on the tuning methods described in chapter 2, applied in its various, 
dedicated versions [2],[4],[5]. An atractive tuning version, regarding TS fuzzy 
models, TS fuzzy controllers and TS fuzzy closed-loop system models (Sections 3 
and 4), by accepting that the controller parameters to ensure a maximum phase 
reserve for each local linearised plant model and the corresponding TISO LTV 
systems are handled as in Sections 3-5. It can be considered equivalent with a re-
tuning of the controller parameters as function of radius modification. This version 
permits the obtaining of better control system performance. 

6.1 Cascade Control Structure 
The control structure contains two loops, the inner regarded to the curent and the 
external regardet to the speed. 

6.2 Quasi-PI Fuzzy Controllers 
For the speed control loop, there are of interest the the standard quasi-PI fuzzy 
controllers (PI-FC) (but not only) [6]. The standard PI-FC is based on one of the 
structures in Fig.6.3, having as characteristic feature: for the standard PI-FC with 
integration on controller output (PI-FC-OI, Fig.6.3-a) the dynamics is introduced by 
differentiating the control error (ek) and integrating the increment of control signal 



(Δuk), and for the standard PI-FC with integration on controller input (PI-FC-II, 
Fig.6.3-b) the dynamics is introduced by integrating ek. 

The membership functions for both fuzzy controllers are of the type presented in 
Fig.6.4 and the decision table is shown in Table 6.1. 

    
Fig.6.3. Structures of standard PI-FCs.            Fig.6.4. Membership functions of PI-FC-OI. 

Table 6.1 Decision table of PI-FC-OI 

Δek\ek NB NS ZE PS PB 
PB ZE PS PM PB PB 
PS NS ZE PS PM PB 
ZE NM NS ZE PS PM 
NS NB NM NS ZE PS 
NB NB NB NM NS ZE 

The parameters of these PI-FCs are {Be, BΔe, BΔu} for the standard PI-FC-OI, and 
{Be, BeI, Bu} for the standard PI-FC-II. The main tuning aspects regarded to the 
PI(D) FCs were presented in our previous papers. A predictive version of the fuzzy 
controllers can be developed based on the incremental version of the digital PID 
controller.  

Conclusions 

The paper presents continuous-time development solutions for electrical drives 
with variable inertia. The tuning relations are deduced for classical but generally 
accepted benchmark type plant models.  

The presented TS fuzzy models dedicated to TISO LTV systems are suitable for 
control structures where the plant mathematical model linearization offers local 
linear models. 

A stability test algorithm for the fuzzy control systems modeled by TS fuzzy 
models based on Lyapunov stability theory. The main limitation of the stability 
analysis algorithm concerns its computational complexity. 

The models and the stability analysis algorithm can be used in the development of 
TS fuzzy controllers based on the parallel distributed compensation with several 
applications. One real-world application can be in the area of electrical drives with 
variable inertia [12], [13], where the development of the local controllers can be 



performed in terms of the ESO method [14]. This real-world application is 
necessary to validate the proposed stability analysis test algorithm. 

The presented application is regarded to a VIDS where the reference input must be 
correlated with the modification of working roll radius. 

References (Selected) 

[1] Åström, K.J. and T. Hägglund: PID Controllers Theory: Design and 
Tuning, Instrument Society of America, Research Triangle Park, 1995. 

[2] Preitl, St. and R.-E. Precup, An extension of tuning Relations after 
symmetrical optimum method for PI and PID controllers, Automatica, Elsevier 
Science, vol. 35, pp. 1731 – 1736, 1999. 

[3] Preitl, St. and R.-E. Precup, Introduction to Control Engineering (in 
Romanian). “Politehnica” Publishing House, 2001,Timisoara, Romania. 

[4]  Precup, R.-E. and S. Preitl, Development of Some Fuzzy Controllers with 
Non-homogenous Dynamics with Respect to the Input Channels Meant for a Class 
of Systems, Proceedings of ECCC-1999, Karlsruhe, Germany. 

[5]  Preitl, Zsuzsa, PI and PID Controller Tuning Method for a Class of 
Systems, SACCS 20017th International Symposium on Automatic Control and 
Computer Science, October 26─27, 2001, Iasi, Romania (e-format)  

[6] Preitl St. and R.-E. Precup, On the Fuzzy Control of a Class of Linear 
Time-Varying Systems, A&QT-R 2004, IEEE-TTC- Conference on Automation, 
Quality and Testing, Robotics, May 13–15, 2004, Cluj-Napoca, Romania. 

[7] Koczy, L.T., Fuzzy If-Then Rule Models and Their Transformation into 
One Another. IEEE Trans. on SMC – part A, 26, (1996) 621-637. 

[8] H. O. Wang, K. Tanaka and M. F. Griffin, An Approach to Fuzzy 
Control of Nonlinear Systems: Stability and Design Issues, IEEE Transactions on 
Fuzzy Systems, (1996), vol. 4,  pp. 14 – 23.  

[9]  M. Johansson and A. Rantzer, Computation of Piecewise Quadratic 
Lyapunov Functions for Hybrid Systems, IEEE Transactions on Automatic 
Control, (1998), vol. 43, pp. 555 – 559. 

[10] M. Johansson, A. Rantzer and K. -E. Arzen, Piecewise Quadratic 
Stability of Fuzzy Systems, IEEE Transactions on Fuzzy Systems, (1999), vol. 7, 
pp. 713 – 722. 

[11] St. Preitl and R.-E. Precup. “PI controller design for speed control of DC 
drives with variable moment of inertia”. Bul.St. U.P.T., Trans. AC&CS. 
Timisoara, Vol. 42(56), pp. 97 – 105. 1997. 


	1	Introduction
	2	Development of Continuously and Quasi-Continuously Operating PI(D) Control Algorithms
	A Class of Takagi-Sugeno Fuzzy Models
	4	Takagi-Sugeno Fuzzy Controllers. Closed-Loop System Models
	5	Stability Test Algorithm
	Application: Winding System Control Solution
	Table 6.1 Decision table of PI-FC-OI


