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Abstract

Databases with both object-oriented and deductive features (DOOD) seem to be the most
promising database technology. There are successful approaches to designing such systems.
However, the resulting systems, in our opinion, still lack several important properties of full-
featured DOOD’s. Realizing that some practical problems cannot be tackled with the former
implementations, we reconsidered the mathematical foundations of the existing models. We
propose a new model for DOOD’s that incorporates the whole range of deductive capabilities
including constraints. We sketch out a proof that shows our model complies with Object
Management Group’s Unified Modeling Language Specification (OMG’s UML).

1 Introduction

Databases, object-oriented paradigm and logic programming are three independently
developed areas in computer science. Both the logical and the object-oriented ap-
proaches to database design attracted considerable interest in the previous decades.
Logic forms the basis for efficient knowledge-based systems, while object-orientated
database languages are popular for their straightforward interface to applications. A
number of attempts to combine the two approaches have been reported in the lit-
erature. Their goal was to create more expressive database models than the object-
orientated ones can be.

Why is this important? We mention here only two reasons. First of all, describing
the surrounding world is not limited to the identification of the objects and their
properties, but it must employ logical elements to express relations between objects
as well. For example the structure of a watch and a mill is greatly identical and we
want represent it somehow. Or a Lamborghini, a diamond ring or da Vinci’s Mona
Lisa are all precious, etc.

Second, there are several problems, for instance in decision support, which can often
not be solved efficiently by means of monoparadigmic methods. Consider, e.g. your



private doctor, who makes decisions in order to cure people. Obviously, the effect of
a therapy varies from person to person because the reactions depend on the anamne-
sis. In general, the effect of a treatment is most satisfactory if similarities to former
cases are not only recognized, but also exploited. To identify similarities, one would
most naturally choose a deductive language. To represent diseases with their evolu-
tions, e.g., object-orientation seems to be the most powerful paradigm.

Our work is aimed to advance the integration of database theory, object-oriented
paradigm and logic programming by developing the most flexible and expressive
database design technology. In the next section we point out some defects of previ-
ous DOOD models. Then an axiomatic model is laid down as the foundation of the
next generation of DOOD systems.

2 Problems of Existing Models
Though the meaning of the term DOOD highly varies between models and im-
plementations, in the mathematical basis they have some common elements taken
from David Maier’s work [13]. Its main goal was to find a sound, complete and
computable logic corresponding to the object-oriented paradigm. As it is seen in
the papers [10, 11, 6, 7, 4, 1, 16], there are well-defined structures which fulfill
object-orientated criteria but it is also observable these models do not go beyond
the capabilities of the object-oriented paradigm: several logical and dynamic fea-
tures are lost or there is trouble with reasoning (cf. [2, 12]). Our work focuses on
incorporating the solutions for the problems outlined next into the existing results.

Mandatory vs. optional conditions.In the case of a Prolog clause, e.g.

proper(X) : −odd(X). ,

there is practically no clue of the intended usage. In other words, it is not clear
if X must beodd or we want tocheck whetherX is odd. None of the DOOD
models[10, 11, 6, 7, 3, 1, 16] is capable of specifying object invariance constraints.
Only via integration of further languages could these logics be partially reconciled
with constraint modeling[6, 1]. Nevertheless, it is unclear how all the mentioned
models could be extended in practical ways.

Contradiction in inheritance. Take a look at the problem called Nixon’s diamond[7,
9]. Nixon is a quaker and also a republican. Quakers are pacifists while republicans
are hawks, thus exactly one of the properties can be inherited by Nixon. If all ob-
jects are represented by a single mathematical structure, one of the features must be
blocked non-deterministically in order to retain soundness [10, 7, 16]. Another op-
tion is the integration either of an object-oriented programming language (OOPL)[6]
or of active elements[5]. In the latter case, it is determined in runtime which prop-
erty is eventually inherited[1, 3]. Independently of the actual realization, it always
has to be decided to which class the child logically and uniquely belongs. The sub-
class should have the properties of both superclasses but it is not able to do so. Some
information is therefore lost during reasoning.



Dynamic classification.Often only partial information is available about an entity.
Let us consider, e.g., the problem of hunt for presents (which is being more and
more acute now with the approach of the Christmas season). In these cases we need
to evaluate a generalized query that matches dynamically any object regardless of
its position in the inheritance hierarchy. Hence, although two (or more) instances
are not related to each other in the hierarchy, they could fit into the same type. A
type system should manage this dynamism. The notion of types is not supported in
DOOD’s and is even not elaborated unlike the concept of classes[10]. In this paper
we try to clarify, amongst others, what type might mean in a DOOD.

The following section demonstrates that our concept formally corresponds to the
most common object-oriented specification, to UML[14]. It is proved in [10] that
the model theory of Maier (improved by Kifer) is a sound and complete OOPL.
Thus we also point out indirectly that the expressiveness of the axiomatic model is
comparable to Maier’s idea and additionally, it elegantly solves the aforementioned
problems.

3 The Axiomatic Model

3.1 Syntax

In this section we present our object-oriented data model formally and show that
the notions of the object-oriented paradigm have their equivalent in it. The latter we
accomplish informally as we compare our concepts to the definitions of the Core
subpackage of the Foundation package of UML[14], which are themselves informal.

The axiomatic object model is a logic and therefore has a language,L, that consists
of:

• an infinite set of variables,

• four disjoint sets of identifiers (namelyC, T , O, I, F andX for classes,
types, objects, type-instances, object fields and auxiliaries respectively — all
of them will be introduced later),

• a set of predicate symbols,P,

• auxiliary symbols, such as(, ), @, [, ],

• the usual logical connectives (i.e.∧,∨,¬,←),

• the usual quantifiers (i.e.∃,∀).

The elements of the identifier sets play the role of function symbols in the model.
Elements ofC, T , O, I andX are constants. Since this is an object-oriented data
model for databases, every individual in the corresponding structure has a constant
in L.



Atomic and complex formulae can be constructed the usual way,only the@, [, ] signs
need further explanation.

@corresponds to the field retrieval/message sending operator. In fact, it is a syntactic
sugar:i@f stands forf(i) andi@f(a1, . . .) for f(i, a1, . . .), wherei is a class, type,
object or type-instance identifier,aj ’s are arguments, i.e. terms. Thus the arity of
every element ofF is at least one.

Comma-separated terms between[ and] denote a special term: a set. The set’s el-
ements are the enumerated terms. Sets can be used as ”normal” terms, i.e. their
occurrences in functions, predicates are allowed. Using sets in basic (i.e. not user-
defined) predicates has the meaning of conjunctions of atomic formulae with non-set
terms in all combinations. User-defined predicates and field identifiers (operations)
can handle set-valued arguments in the way they wish1; sending a message to a set
is interpreted as sending the message to each element of the set, and the results are
collected in a set.

Now we are ready to define the object-oriented notions in our model.

3.2 The Concept of Classes

A classC is a triple〈c, S, M〉 wherec ∈ C (the class identifier),S is a set of axioms
(true closed statements),M is the implementation of operations (methods) describ-
ing the class. The elements ofScan be divided into three groups:attribute, operation
andconstraint declarations.

Attribute declarations have the form ofattr(f) whereattr∈P andf∈F meaning
the class has an attribute namedf . Operations provided by a class described via
oper(f, arity) predicates whereoper∈P, f∈F (the name) andarity is a natural
number.

Constraint declarations provide new information about the fields defined by the pre-
viously introduced declarations. These constraints may use built-in predicates, such
astypeof(f, t) (typeof∈P, f∈F , t∈T ), which asserts that the value off is com-
patible witht.2 Or, alternatively, the constraints can be expressed via user-defined
predicates (which are members ofP, too). These predicates, as obvious, always
have a ”body”, an intended meaning usually expressed by an implication formulae
that is included in the constraint declarations.

Of course the componentsS andM are not independent. There are several well-
formedness rules that must hold otherwise a class is considered ill-formed. They
include e.g. field-name uniqueness, each operation must have a realization (method).

L has a special binary predicate,=. Its existence makes possible to define the same-
ness of two classes,C1 andC2, ensuring no classes with same identifiers but dif-

1However it requires the existence of special set-functions.
2We will discuss type-compatibility later in details.



ferent axiom-sets/methods can exist:3 C1 = C2, i.e. are the same if and only if the
same holds for their identifiers:c1 = c2. The case will be similar for objects, types
and type-instances. Thus in the rest of this section identifiers will be used instead of
their owner, which one we mean will always be unambiguous from the context.

Returning to our reference, UML, a class is ”a description of [. . . ] attributes, opera-
tions, methods, relationships, and semantics.”[14] Relationships, i.e. generalizations
and associations, will be discussed later in this paper. But, we have just shown, all
properties of the other elements are expressible in our model, however, some of
the concrete symbols etc. was suppressed for simplicity. Examples are field-scopes
and visibility. Their transformation into our model is an easy task. Note that the ax-
iomatic model is capable of asserting pretty complex facts about the objects via its
rather free constraint declaration mechanism.

3.3 Objects

The second notion in our model is theobject (instance). For its definition we need a
notation: lett = 〈. . . , c, . . .〉 be a tuple, thent(c) denotes the component oft which
is denoted byc.

Every object is a triple〈o, c, M〉 whereo ∈ O (object identifier) andM is a model
of c(S) for the primary classc: M |= c(S). M has to be minimal in the sense that it
assigns individuals to unary function symbols introduced byc only. In fact the value
assigned to a particular attribute is one of the followings:

• NULL∈X (the well-known special symbol for unknown values),

• [ ]∈X (the empty set),

• a set of object identifiers.4

The properties of NULL and[ ], although they are fairly intuitive, require further
discussion, and are not in the scope of this paper.

The concept of object we have just introduced is directly compatible with the one
of UML: ”an object is an instance of a class [. . . ] which has a state that stores the
effects of the operations”.[14]

3.4 The Type System

UML makes distinction between (implementation) classes andtypes. The former’s
equivalent in our model is already known to the reader while the latter’s is not. Now
we fill this gap.

3Were classes in the object model a single partially defined function,C−→2F (L) whereF (L) is the
set of all closed formulae ofL, that would be trivial.

4A set containing only one element represents the element itself.



In fact, the notion of types in the axiomatic model is more sophisticated than UML’s.
A type is not only ”used to specify a domain of objects together with operations
applicable to the objects without defining the physical implementation of those
objects”[14] but may implement features similar to delegation, dynamic ”classifi-
cation” and templates (via so-calledtype-instances).

There fundamental ideas of our types are as follows.

1. As opposed to UML, objects do not belong to types indirectly, through their
primary class, but they do directly, on their own, satisfying the types’ axioms.

2. It was realized a long ago that using a strictly typed language helps to develop
bug-free applications. Thus objects are usually manipulated as instances of
types.5 We treat typed objects (type-instances) standalone entities which may
have their own attributes and functions.

The formalism is the following: a type is a tuple〈t, CS, TS, M〉, where

• t ∈ T (type identifier),

• CS is a set of axioms describing fields provided by the object itself,

• TS defines fields of type-instances and constraints on any field as theS com-
ponent of a class,

• M is the implementation of operations (methods) defined byTS.

The specification of the fields belonging to the objects and not to type-instances
(e.g.CS) can be performed in a number of different ways, from the user’s view. One
may say, for example,t1∈T is a union ofc1∈C andc2∈C or a union oft2∈T and
t3∈T , or, like an interface, all instances oft4∈T must have an operationfoo . In
any case

¬∃ϕ CS` ϕ ∧ TS ` ϕ

must hold, i.e. fields of a type-instance must be different from its ”disguised” ob-
ject. It is just a formal restriction because such name collisions can be avoided via
renaming the field(s) considered if necessary.

Because thetypeof predicate requires types, not classes, for each class there must
exist exactly one type containing the same declarations as the corresponding class.
By means of separating types and classes it is easily possible to assign NULL’s and
[ ]’s to any member field: the semantics of the predicate symbol for the integer type
may be, e.g., ”it is an element of the integer class or NULL or[ ]”.

5Furthermore, classes and types often have one to one correspondence.



To make the discussion of type-instances simpler let us introduce a few notations:

S def= CS∪ TS

T(S) def= T(CS)∪ T(TS)

for any typeT. Finally,
∏

S M is a model, whereS is an axiom-set,M is a model,
such that it contains only truth-values of formulae in which there are no function
symbols in addition to the ones used inS. It can be interpreted as a projection, what
explains the usage of the symbol

∏
.

A type-instance is represented by a tuple〈i, t, o, M〉wherei ∈ I is the type-instance
identifier, t ∈ T is its type,o ∈ O is the disguised object, andM is a model such
that: ∏

t(CS)o(M) ∪M |= t(S).

As at the definition of objectsM must be minimal in a sense:
∏

t(TS) M = M . Type-
instances may replace objects in any expression, the meaning is the same as if the
instance’so component were there.

Because types are independent of the class hierarchy, type-compatibility of our data
model does not need the concept of generalization:

o ◦ t def⇐⇒ ∃M
∏

t(CS)o(M) ∪M |= t(S),

that is an objecto, is compatible with a typet, if and only if an assignment of
instance-fields exists such that the assignments together satisfy all of the type’s ax-
ioms.

3.5 Generalization

One of the key concepts of the object-oriented paradigm isgeneralization. It is ”a
taxonomic relationship between a more general element and a more specific ele-
ment. The more specific element is fully consistent with the more general element
and contains additional information.”[14]

In our model generalization is not of that great significance because the cases, in
which it is needed to handle objects with several identical properties in a uniform
way, can be modeled more elegantly by means of the flexible type system described
previously. But UML mentions taxonomic relationships, too, and they have to be
retained. The user may thus specifyc1: c2 (c1, c2 ∈ C, :∈ P) suggestingc2 is a
generalization ofc1.

In fact,c2 is a generalization ofc1 (c1 ≺ c2) if and only if

c(S)
1 ` c(S)

2 ∧ c1: c2.

This definition conforms to UML:



• If c2 is a generalization ofc1, the latter has all fields of the former with their
properties and this fact is reflected by the axiom-sets (see the definition of the
concept class). And finally, the generalization is asserted by the user,c1: c2,
otherwise taxonomicallyc1 is not an offspring ofc2, they are only somewhat
similar to each other.

• If the user assertsc1: c2 andc(S)
1 ` c(S)

2 holds, all fields and properties ofc2 are
possessed byc1 (because of the definition of̀), i.e. c2 is a generalization of
c1.

Our interpretation of generalization implies two obvious things:

1. From the view of the implementation of the axiomatic model the simplest
(and most evident) way to realize generalization (inheritance) is to include
c(S)

2 in c(S)
1 if c1: c2.

2. If one is interested in structural, behavioral inclusion (but not in the original
taxonomic facts) only entailment is to be considered.

The previously defined subclass relationship (≺), as usual, is a partial order on
classes, i.e. it is reflexive, transitive and antisymmetric. Consequently, we can speak
about class hierarchy. Furthermore, ”an instance of the more specific element may
be used where the more general element is allowed”[14], i.e.

o(M) |= c(S)
1 ∧ c1 ≺ c2 =⇒ o(M) |= c(S)

2 .

The proofs of the propositions are pretty straightforward taking into consideration
the properties of̀ and:. (The latter, because of its semantics, is a partial order, too.)

In an object-oriented model, certain classes are said to be parents (children) of other
classes. What is the equivalent of those relationships in the axiomatic model? As
the user supplies ancestors/offsprings with:, ≺ does not specify parents/children
directly. It is true that if

c1 ≺ c3 ∧ ¬∃c2 (c1 ≺ c2 ∧ c2 ≺ c3) ,

thenc1 is a child ofc3 ∈ C, but not conversely: in the user’s taxonomic model a class
may be parent and grandparent of another class at the same time. That information
is lost in this way. Alternatively,: might suggestparent–child relationship and then
≺ would be its transitive closure (not forgetting the entailment that is obligatory).

Generalization can be defined among types, too. But, since their usage differs from
the one of classes, it is usually unnecessary.



3.6 Differential Inheritance

An object-oriented model is ill-formed if it is inconsistent.[14] So is the axiomatic
model. But sometimes it would be nice if we could retain the taxonomic relation-
ship although a property of the subclass contradicts one of those of the super-
class. Consider a database of a hypermarket with two classes:wooden spoon and
wooden spoon made of plastic . Of course, the former’s material is wood,
the latter’s plastic. To model it, one needs to block the inheritance of the constraint
on the field namedmaterial , or, as we call it, specifydifferential inheritance.

In our model differential inheritance, denoted byc1:d c2 whered means differential,
seems to be very simple, only the axioms considered must not exist in the offspring
class,c1. But thenc1 is no longer a subclass of its ancestor,c2, sincec(S)

1 /̀ c(S)
2 . How

can we make use of the taxonomic relationship then?

The purpose of a taxonomic relationship, when differential inheritance is in effect,
is to be able to answer queries such as ”for which entities in the groupc2 is f true”
or ”what is the value of the field(s) of the entities in the groupc2 for which f is
true” wheref is a condition andc2 has at least one differential offspring,c1. If
inheritance blocking does not affect the relationships among the fields involved in
the query, one may say,c1 is a subclass ofc2 considering the queryq. Returning
to our spoon example if we are not interested in the material of the wooden spoon
and no condition refers to it in a query,wooden spoon made of plastic is a
wooden spoon (for the time of the query).

Formally, let
∏

[q] c(S) (c ∈ C) denote the maximum subset ofc(S) such that it con-
tains no function symbols which stand for fields inc other than those mentioned in
the query,q. In other words,

∏
[q] c(S) is the transitive closure of the function sym-

bols fromq insidec(S).
∏

[q] c(S) can also be interpreted as a projection ofc(S) respect
to the function symbols ofq. Thenc1 is a subclass ofc2 considering the queryq,
denotedc1 ≺q c2, if and only if∏

[q]c
(S)
1 `

∏
[q]c

(S)
2 ∧ c1:d c2.

3.7 Overloading, Overriding

The careful reader might have wondered how the axiomatic model introduced in the
previous subsections supportsoverloading(operations with the same name but with
different signatures). The answer is easy, somewhat trivial after knowing tons of
object-oriented models and implementations. Operations with different number of
arguments match different function symbols and so do the ones that have the same
number of arguments but their type differs. Type constraints for operations, as for
attributes, must be placed into the constraint field of the axiom-set.

Overridingmeans replacing the implementation of an operation. In our model there
are two modeling parts that may represent methods. One of them is theM compo-



nent of classes, which is not used for reasoning. Therefore its elements can be freely
superseded in subclasses.

User-defined predicates may require functions, too. The body of those functions has
to reside in theScomponent of the classes because they are used for deduction. They
are not overridable, however. This is not a restriction since if more constraints are to
be added, they can be, but if a constraint (or its definition) is replaced, the subclass
relationship may no longer hold (and we cannot speak about overriding). In any
case one can specify differential inheritance or add the new constraints, definitions
as appropriate.

3.8 Extending the Model

Association is ”the semantic relationship between two or more classifiers that spec-
ifies connections among their instances.”[14] Attributes of the axiomatic model can
be viewed as incomplete connections, i.e. navigation is supported only in one direc-
tion. By means of the constraint field of the classes one can specify that ”backward
attributes” must exist ensuring the existence of realbinaryconnections. Non-binary
associations always require a class for the connections in the model, then they can
be split into several binary associations between the participants and the association
class. The method is similar if a binary association has properties as well.

The logic language,L, defined in Section 3.1 uses sets to represent multi-valued
results of the functions. Sometimes not only the elements but their order is relevant:
such structures are calledlists. To manage lists, of course, new functions need to be
added toL. Many other extensions are realizable in this way, too.

4 Conclusion

Real DOOD’s would provide much benefit, however, current DOOD models exhibit
deficiencies in logical modeling. We thus introduced a novel axiomatic approach to
DOOD’s.

In the previous section we showed that this approach leads to an at least as expres-
sive language as the UML. Furthermore, our model supports both mandatory and
conditional elements using distinctive notions. We succeeded in reducing the infor-
mation loss as much as possible in the presence of contradiction in inheritance. We
also enriched the model with a type system. If a query is generalized, i.e. it specifies
a type instead of an object class, the evaluation returns all instances that match the
type definition irrespective of the class they belong to. Hence, our type definition
supports these queries, too.

In our future endeavor we exhaustively verify the axiomatic model via the imple-
mentation of a complete system. Currently the class and the instance managers are
implemented and our experiences are about to be submitted. The solid basis of the
type system is already specified by [15]. We believe that the next generation of



DOOD’s will, according to the original goal, fit all the needs of classical data mod-
eling along with those of artificial intelligence.
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