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Abstract: Some difficulties emerging during the construction of fuzzy rule bases are 
inherited from the type of the applied fuzzy reasoning. The fuzzy rule base requested for 
many classical reasoning methods needed to be complete. In case of fetching fuzzy rules 
directly from expert knowledge, the way of building a complete rule base is not always 
straightforward. One simple solution for overcoming the necessity of the complete rule 
base is the application of interpolation-based fuzzy reasoning methods, since interpolation-
based fuzzy reasoning methods can serve usable (interpolated) conclusion even if none of 
the existing rules is hit by the observation. These methods can save the expert from dealing 
with derivable rules and help to concentrate on cardinal actions only. For demonstrating 
the benefits of the interpolation-based fuzzy reasoning methods in construction of fuzzy rule 
bases a simple example will be introduced briefly in this paper too. 
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1 Introduction 

Since the classical fuzzy reasoning methods (e.g. compositional rule of inference) 
are demanding complete rule bases, the classical rule base construction claims a 
special care of filling all the possible rules. In case if there are some rules missing, 
there are observations may exist which hit no rule in the rule base and therefore no 
conclusion is obtained. Having no conclusion in a fuzzy control structure is hard 
to explain. E.g. one solution could be to keep the last real conclusion instead of the 
missing one, but applying historical data automatically to fill undeliberately 
missing rules could cause unpredictable side effects. Another solution for the same 
problem is the application of the interpolation-based fuzzy reasoning methods, 
where the derivable rules are deliberately missing. Since the rule base of a fuzzy 
interpolation-based controller, is not necessarily complete, it could contain the 



most significant fuzzy rules only without risking the chance of having no 
conclusion for some of the observations. In other words, during the construction of 
the fuzzy rule base, it is enough to concentrate on the cardinal actions; the 
“filling” rules (rules could be deduced from the others) can be deliberately 
omitted.  

In the followings, first an approximate fuzzy reasoning method based on 
interpolation in the vague environment of the fuzzy rule base [4], [5], [6] will be 
introduced. The main benefit of the proposed method is its simplicity, as it could 
be implemented to be simple and quick enough to be applied in practical direct 
fuzzy logic control too. Then its adaptation to fuzzy control structures through a 
simple rule base construction example will be discussed briefly. 

2 Interpolation-based Fuzzy Reasoning 

One way of interpolative fuzzy reasoning is based on the concept of vague 
environment [2]. Applying the idea of the vague environment the linguistic terms 
of the fuzzy partitions can be described by scaling functions [2] and the fuzzy 
reasoning itself can be replaced by classical interpolation. The concept of vague 
environment is based on the similarity or indistinguishability of the elements. Two 
values in the vague environment are ε-distinguishable if their distance is grater 
than ε. The distances in vague environment are weighted distances. The weighting 
factor or function is called scaling function (factor) [2]. Two values in the vague 
environment X are ε-distinguishable if 
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where ( )21, xxsδ  is the vague distance of the values x1, x2 and s(x) is the scaling 
function on X. For finding connections between fuzzy sets and a vague 
environment the membership function )(xAµ  can be introduced as a level of 
similarity a to x, as the degree to which x is indistinguishable to a [2]. The α-cuts 
of the fuzzy set )(xAµ  are the sets which contain the elements those are (1−α)-
indistinguishable from a (see fig.1.): 
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Fig. 1. The α-cuts of )(xAµ  contains the elements that are  

(1−α)-indistinguishable from a 

This case (Fig.1.) the vague distance of points a and b ( )b,a(sδ ) is the 
Disconsistency Measure (SD) of the fuzzy sets A and B (where B is a singleton): 
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where BA∩  is the min t-norm, ( ) ( ) ( )[ ]xxx BABA µµµ ,min=∩
 ∀ x ∈ X. 

From the viewpoint of fuzzy reasoning and fuzzy rule bases, where an observation 
fuzzy set is needed to be compared to rule antecedents built up member fuzzy sets 
(linguistic terms) of the antecedent fuzzy partitions (2) and (3) means that the 
disconsistency measures between member fuzzy sets of a fuzzy partition and a 
singleton, can be calculated as vague distances of points in the vague environment 
of the fuzzy partition. The main difference between the disconsistency measure 
and the vague distance is, that the vague distance is a value in the range of [0,∞], 
while the disconsistency measure is limited to [0,1].  

Therefore if it is possible to describe all the fuzzy partitions of the primary fuzzy 
sets (the antecedent and consequent universes) of the fuzzy rule base by vague 
environments, and the observation is a singleton, the “extended” disconsistency 
measures of the antecedent primary fuzzy sets of the rule base, and the “extended” 
disconsistency measures of the consequent primary fuzzy sets and the 
consequence can be calculated as vague distances of points in the antecedent and 
consequent vague environments.  

The vague environment is described by its scaling function. For generating a 
vague environment of a fuzzy partition we have to find an appropriate scaling 
function, which describes the shapes of all the terms in the fuzzy partition. A 
fuzzy partition can be characterised by a single vague environment if and only if 
the membership functions of the terms fulfil the following requirement [2]: 
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Iji ∈∀ , , where s(x) is the vague environment. 



Generally the above condition is not fulfilling, so the question is how to describe 
all fuzzy sets of the fuzzy partition with one “universal” scaling function. For this 
task the concept of approximate scaling function, as an approximation of the 
scaling functions describes the terms of the fuzzy partition separately [4], [5], [6] 
is proposed. If the vague environment of a fuzzy partition (the scaling function or 
the approximate scaling function) exists, the member sets of the fuzzy partition 
can be characterised by points in the vague environment. (These points are 
characterising the cores of the fuzzy terms, while the membership functions are 
described by the scaling function itself.) If all the vague environments of the 
antecedent and consequent universes of the fuzzy rule base are exist, all the 
primary fuzzy sets (linguistic terms) used in the fuzzy rule base can be 
characterised by points in their vague environment. Therefore the fuzzy rules 
(build on the primary fuzzy sets) can be characterised by points in the vague 
environment of the fuzzy rule base too. This case the approximate fuzzy reasoning 
can be handled as a classical interpolation task. Applying the concept of vague 
environment (the distances of points are weighted distances), any interpolation, 
extrapolation or regression methods can be adapted very simply for approximate 
fuzzy reasoning [4], [5], [6]. 

Because of its simple multidimensional applicability, for interpolation-based fuzzy 
reasoning in this paper the adaptation of the Shepard operator based interpolation 
(first introduced in [1]) is suggested. Beside the existing deep application oriented 
investigation of the Shepard operator e.g. [3], it is also successfully applied in the 
Kóczy-Hirota fuzzy interpolation [12]. (The stability and the approximation rate of 
the Shepard operator based Kóczy-Hirota fuzzy interpolation is deeply studied in 
[7] and [8].) The Shepard interpolation method for arbitrarily placed bivariate data 
was introduced as follows [1]: 
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where measurement points xk, yk ( [ ]nk ,0∈ ) are irregularly spaced on the domain 

of ℜ→ℜ∈ 2f , 0>λ , and ( ) ( )[ ] 2122
kkk yyxxd −+−= . This function can be 

typically used when a surface model is required to interpolate scattered spatial 
measurements. 

The adaptation of the Shepard interpolation method for interpolation-based fuzzy 
reasoning in the vague environment of the fuzzy rule base is straightforward by 
substituting the Euclidian distances with vague distances:  
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where s
iX  is the ith scaling function of the m dimensional antecedent universe, x 

is the m dimensional crisp observation and ak are the cores of the m dimensional 
fuzzy rule antecedents A

k
. 

Thus in case of singleton rule consequents fuzzy rules Rk 

If x1 = Ak,1  And  x2 = Ak,2 And … And  xm = Ak,m   Then  y = ck (7) 

by substituting (6) to (5) the conclusion of the interpolative fuzzy reasoning can be 
obtained as: 
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The interpolative fuzzy reasoning (8) can simply extend to be able to handle fuzzy 
conclusions by introducing the vague environment (scaling function) of the 
consequence universe. This case the fuzzy rules Rk has the following form: 

If x1 = Ak,1  And  x2 = Ak,2 And … And  xm = Ak,m   Then  y = Bk (9) 

By introducing vague distances on the consequence universe: 
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where Ys  is the ith scaling function of the one dimensional consequent universe, 
bk are the cores of the one dimensional fuzzy rule consequents B

k
.  

Introducing the first element of the one dimensional consequence universe b0 the 
(Y: b0≤y  ∀ y∈Y), based on (8) and (10) the requested one dimensional 
conclusion ( )xy  can be obtained from the following formula: 
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A simple one-dimensional example for the approximate scaling function and the 
Shepard operator based interpolation (11) is introduced on Fig. 2 and on Fig. 3.  

 



 
Fig. 2. Interpolation of two fuzzy rules (Ri: Ai→Bi) (see fig. 3. for notation) 

 
Fig. 3. Interpolation of three fuzzy rules (Ri: Ai→Bi) in the approximated vague 

environment of the fuzzy rule base, using the Shepard operator based interpolation 
(p=1) (Approx.), and the min-max. CRI with the centre of gravity defuzzification 

(CRI), where µ is the membership grade, and s is the scaling function 

For comparing the crisp conclusions of the interpolation-based fuzzy reasoning 
and the classical methods, the conclusions generated by the max-min 



compositional rule of inference (CRI) and the centre of gravity defuzzification for 
the same rule base is also demonstrated on the example figures (Fig. 2, Fig. 3). 
More detailed description of the proposed approximate fuzzy reasoning method 
can be found in [4], [5], [6]. 

3 Application Example 

The main benefit of the interpolation-based fuzzy reasoning method, introduced in 
the previous chapter, is its simplicity. Applying look-up tables for pre-calculating 
the vague distances, it could be implemented to be simple and quick enough to fit 
the speed requirements of practical real-time direct fuzzy logic control systems, 
e.g. the requirements of fuzzy behaviour-based control too. The calculation efforts 
of many other interpolation-based fuzzy reasoning methods “wasted” for 
determining the exact membership shape of the interpolated fuzzy conclusion 
prohibits their practical application in real-time direct fuzzy logic control. The 
lack of the fuzziness in the conclusion is a disadvantage of the proposed method, 
but it has no influence in common applications where the next step after the fuzzy 
reasoning is the defuzzification.  

For demonstrating the simplicity of defining rule base for interpolation-based 
fuzzy reasoning, as an example, the construction of the state-transition rule base of 
a user adaptive information retrieval system will be introduced briefly in the 
followings. 

In this user adaptive information retrieval system example (introduced in [10] and 
[11] in more details) the user adaptivity is handled by combination of existing 
(off-line collected) human opinions (user models) in the function of their 
approximated similarity to the actual user opinions. The goal of the state-transition 
control is to estimate the “current state”, the actual suitability of the existing user 
models. Based on the observations (inputs) – the conclusion of the user feedback 
(the similarity of the user feedback to the existing user models SSi for all the 
possible models [ ]N,1i∈∀ ) and the previous state Si (estimation) the state-
transition rule base has to estimate the new state values, the next approximation of 
the vector of the suitability of the existing user models.  

The heuristic we would like to implement in our example is very simple. If we 
already found a suitable model (Si) and the user feedback is still supporting it 
(SSi), we have to keep it even if the user feedback began to support some other 
models too. If there were no suitable model, but the user feedback began to 
support one, we have to pick it at once. In case of interpolation-based fuzzy 
reasoning, the above heuristic can be simply implemented by the following state-
transition rule base [10], [11]. For the ith state variable Si, [ ]N,1i∈ of the state 
vector S: 



If Si=One  And SSi=One  Then Si=One (12.1) 

If Si=Zero  And SSi=Zero  Then Si=Zero (12.2) 

If Si=One  And SSi=Zero 
 And SSk=Zero  Then Si=One  [ ] k,N,1k∈∀

(12.3) 

If Si=Zero  And SSi=One 
   And Sk=Zero And SSk=Zero Then Si=One  [ ] k,N,1k∈∀

(12.4) 

If Si=Zero  And SSi=One 
   And Sk=One  And SSk=One Then Si=Zero [ ] k,N,1k∈∃

(12.5) 

where SSi is the similarity of the user feedback to the ith existing user model 
[ ]N,1i∈∀ ; N is the number of known user models (state variables). The structure 

of the state-transition rules is similar for all the state variables. Zero and One are 
linguistic labels of fuzzy sets (linguistic terms) representing high and low 
similarity. The interpretations of the Zero and One fuzzy sets can be different in 
each Si, SSi universes. 

Please note that rule base (12) is sparse. It contains the main rules for the 
following straightforward goals only: Rule (12.1) simply keeps the previously 
chosen state values in the case if the symptom evaluation also agrees. The rule 
(12.2) has the opposite meaning, if the state values were not chosen, and moreover 
the symptom evaluation is also disagrees the state value should be suppressed. The 
rule (12.3) keeps the already selected state values (previous approximation), even 
if the symptom evaluation disagrees, if it has no better “idea”. Rules (12.4) and 
(12.5) have the task of ensuring the relatively quick convergence of the system to 
the sometimes unstable (changeable) situations, as new state variables which seem 
to be fit, can be chosen in one step, if there is no previously chosen state, which is 
still accepted by the symptom evaluation (12.4). (Rule (12.5) has the task to 
suppress this selection in the case if exists a still acceptable state which has 
already chosen.) The goal of this heuristic is to gain a relatively quick 
convergence for the system to fit the opinions of the actual user, if there is no state 
value high enough to be previously accepted. This quick convergence could be 
very important in many application areas e.g. in case of an on-line user adaptive 
selection system introduced in [10], where the user feed-back information needed 
for the state changes are very limited. 

Some state changes of the state-transition control (fuzzy automaton) in the 
function of the user feedback (SS1, SS2) for the two states case (applying the 
state-transition rule base (12)) are visualised on Fig.5. and Fig.6. 



   
Fig. 4. Do not “pick up” a new state if the previous approximation is still adequate 

   
Fig. 5. But “pick it up” if it seems better, or at least as good as the previous was 

Counting the rules of the classical (e.g. compositional) fuzzy reasoning for the 
same strategy we find, that in the two state case the complete rule base needs 16 
rules (as we have four observation universes (S1, SS1, S2, SS2) each with two 
terms fuzzy partitions (Zero, One) - 24 rules), while the sparse rule base (12) 
contains 5 rules only (see table 1 for the state-transition rule base of state S1). 
Taking into account that in the proposed behaviour-based control structure a 
separate rule base is needed for each state variables, the behaviour coordination 
needs 32 rules, while 10 is enough in case of applying the proposed interpolation-
based fuzzy reasoning method. Increasing the number of the state variables the 
situation became even worse. In case of three state variables (S1, S2, S3) the rate 
become 623 ⋅  ( nn ⋅⋅ 22 , where n is the number of the states) and 63 ⋅  ( ( )3+⋅ nn ) up 
to the interpolation-based method (see table 2).  



Table 1. State-transition rule base of state S1 in case of two state variables (S1,S2) 
according to rule base (12) 

RS1: S1 SS1 S2 SS2 S1  
1., One One   One    (according to (12.1)) 
2., Zero Zero   Zero    (according to (12.2)) 
3., One Zero  Zero One    (according to (12.3)) 
4., Zero One Zero Zero One    (according to (12.4)) 
5., Zero One One One Zero    (according to (12.5)) 

Table 2. State-transition rule base of state S1 in case of three state variables 
(S1,S2,S3) according to rule base (12) 

RS1: S1 SS1 S2 SS2 S3 SS3 S1  
1., One One     One  (12.1) 
2., Zero Zero     Zero  (12.2) 
3., One Zero  Zero  Zero One  (12.3) 
4., Zero One Zero Zero Zero Zero One  (12.4) 
5., Zero One One One   Zero  (12.5) 
6., Zero One   One One Zero  (12.5) 

 

The exponential rule number “explosion” in case of increasing the number of the 
input variables makes many heuristic ideas unimplementable and therefore 
useless. E.g. in the case of the original source of the example application of this 
paper (introduced in [10]), the behaviour coordination module applied for user 
adaptive information retrieval system had 4 state variables (one for each emotional 
models), which makes our simple rule base (12) practically unimplementable as a 
complete rule base ( 102424 8 =⋅  rules). While our working demonstrational 
example had only 28 rules thanks to the applied interpolation-based fuzzy 
reasoning method. 

Conclusions 

The goal of this paper was to introduce an interpolation-based fuzzy reasoning 
method, which could be implemented to be simple and quick enough to fit the 
requirements of real-time direct fuzzy logic control systems. The suggested 
approximate fuzzy reasoning method based on interpolation in the vague 
environment of the fuzzy rule base gives an efficient way for designing direct 
fuzzy logic control applications. The lack of the fuzziness in the conclusion is a 
disadvantage of the proposed method, but it has no influence in common 
applications where the next step after the fuzzy reasoning is the defuzzification.  



To give some guidelines for interpolation-based fuzzy reasoning rule base design, 
some highlights of the state-transition rule base of a user adaptive information 
retrieval system application ([10], [11]) is also introduced in this paper.  

The implementation of interpolation-based fuzzy reasoning methods in fuzzy 
control structures simplifies the task of fuzzy rule base creation. Since the rule 
base of a fuzzy interpolation-based controller is not necessarily complete, it could 
contain the most significant fuzzy rules only without risking the chance of having 
no conclusion for some of the observations. In other words, during the 
construction of the fuzzy rule base, it is enough to concentrate on the cardinal 
actions; the “filling” rules (rules could be deduced from the others) could be 
deliberately omitted. Thus, compared to the classical fuzzy compositional rule of 
inference, the number of the fuzzy rules needed to be handled during the design 
process could be dramatically reduced. 

The necessity of the complete rule base in many classical fuzzy reasoning methods 
(e.g. max-min CRI) and hence the exponential rule number “explosion” in case of 
increasing the number of the input variables makes numerous rule base ideas 
unimplementable and therefore useless. The application of interpolation-based 
fuzzy reasoning methods could provide some implementation chances for many of 
them (see e.g. our simple example in section 3). 
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