
Extending the Performance Models of Web 
Applications with Queueing Algorithm 

Ágnes Bogárdi-Mészöly, Tihamér Levendovszky, Hassan Charaf 
Department of Automation and Applied Informatics 
Budapest University of Technology and Economics 
Goldmann György tér 3, H-1111 Budapest, Hungary 
agi@aut.bme.hu, tihamer@aut.bme.hu, hassan@aut.bme.hu 

Abstract: Distributed systems and web applications play an important role in computer 
science nowadays. The most common consideration is performance, because these systems 
have to provide cost-effective and high-availability services in the long term, thus, they 
have to be scaled to meet the expected load. Performance measurements can be the base 
for performance modeling and prediction. With the help of performance models, the 
performance metrics (like response time) can be determined at early stages of the 
development process. The paper presents the results of performance measurements of an 
ASP.NET web application. The goal of our work is to predict the response time of ASP.NET 
web applications based on a queueing model handling multiple session classes with MVA 
evaluation algorithm. We have tested a web application with concurrent user sessions to 
estimate the model parameters. We implemented the evaluation algorithm with the help of 
MATLAB. We demonstrated and validated the model in ASP.NET environment. 

Keywords: performance modelling and analysis, web applications, queueing models, 
measurements, performance prediction 

1 Introduction 

New frameworks and programming environments were released to aid the 
development of complex web applications and to support building services that 
offer dynamic content. These new languages, programming models and 
techniques are used widespread nowadays, thus developing such applications is 
not the only issue any more: operating, maintenance and performance questions 
became of key importance. One of the most crucial factors is performance, 
because network systems have to face a large number of users, they have to 
provide high availability services with low response times in a cost-effective way. 

Performance measurements can serve as the basis for performance modeling and 
prediction. The performance-related problems emerge very often only at the end 



of the software project. With the help of properly designed performance models, 
the performance metrics of a system can be determined at earlier stages of the 
development process. In the past few years there have been proposed several 
methods addressing this goal. 

A group of them are based on queueing networks or extended versions of 
queueing networks [1] [2] [3] [4]. By solving the queueing model using analytical 
and simulation solutions, performance metrics can be predicted. The next group 
uses Petri-nets or generalized stochastic Petri-nets [5] [6], which can represent 
blocking, and synchronization aspects much more than queueing networks. A third 
proposed approach uses a stochastic extension of process algebras, like TIPP 
(Time Processes and Performability Evaluation) [7], EMPA (Extended Markovian 
Process Algebra) [8] and PEPA (Performance Evaluation Process Algebra) [9]. 

Today one of the most prominent technologies for distributed systems and web 
applications is Microsoft .NET [10]. Our primary goal was to predict the response 
time of ASP.NET web applications based on a queueing model. The commonly 
used performance metrics are response time, throughput and resource utilization. 
The results contributed in this paper deal with the response time, which was 
measured and predicted, because it is the only performance metric to which the 
users are directly exposed. 

The organization of this paper is as follows. Section 2 covers related work. 
Section 3 presents our demonstration and validation of the model in ASP.NET 
environment: Section 3.1 describes our estimation of the model parameters, 
Section 3.2 presents our implementation of the model evaluation algorithm, and 
Section 3.3 demonstrates our experimental setup and experimental validation of 
the model. Finally, Section 4 presents our conclusion and future work. 

2 Related Work 

Queueing theory [1] [2] is one of the key analytical modeling techniques used for 
computer system performance analysis. Queueing networks and their extensions 
(like queueing Petri nets [11]) are proposed to model web applications [3] [4] [11]. 

In [4] a basic queueing model with some enhancements is presented for multi-tier 
web applications. In the basic model an application is modeled as a network of M  

queues: M1 QQ ,...,  (Figure 1). Each queue represents an application tier, and has a 
processor sharing discipline, since this discipline closely approximates the 
scheduling policies applied by the most operating systems. A request can take 
multiple visits to each queue during its overall execution, thus there are transitions 
from each queue to its successor and its predecessor as well, namely, a request 

from queue iQ  either returns to 1iQ −  with a certain probability ip , or proceeds to 



1iQ +  with probability ip1− . There are only two exceptions: the last queue MQ , 

where all requests return to the previous queue )( 1pM =  and the first queue 1Q , 

where the transition to the preceding queue denotes request completion. iS  

denotes the service time of a request at iQ  )( Mi1 ≤≤ . 

Internet workloads are usually session-based. The model can handle session-based 

workloads as an infinite server queueing system 0Q , that feeds the network of 
queues and forms the closed queueing network depicted in Figure 1. Each active 

session is in accordance with occupying one server in 0Q . The time spent at 0Q  
corresponds to the user think time Z . Because of the infinite server queueing 
system, the model captures the independence of the user think times and the 
service times of the request at the application. 

The model can be evaluated for a given number of concurrent sessions N . A 
session in the model corresponds to a customer in the evaluation algorithm. 

 
Figure 1 

Modeling a multi-tier web application using a queueing network 

The MVA (Mean-Value Analysis) algorithm for closed queueing networks [1] [4] 
[12] iteratively computes the average response time of a request. The algorithm 
introduces customers into the queueing network one by one, the cycle terminates 
when all customers have been entered. 

The model can handle multiple visits to a tier regardless of whether they occur 
sequentially or in parallel, since the evaluation algorithm uses visit ratios instead 

of transition probabilities. The visit ratio iV  is the average number of visits made 

by a request to iQ  during its processing. The visit ratios can be computed from 
the transition probabilities. They provide an alternate representation of the 
queueing network. 

An enhancement of the baseline model [4] can handle multiple session classes. 
Incoming sessions of a web application can be classified into multiple ( C ) 



classes: C21 CCC ,...,, . N  is the total number of sessions as previously, 

and cN denotes the number of sessions of class c , thus ∑ =
=

C

1c cNN
. A possible 

population with n  sessions means that the number of sessions within each class c  

is between 0  and cN , and the sum of the number of sessions in all classes is n , 

namely a feasible population is a C -tuple ),...,,( C21 nnn , that cc Nn0 ≤≤  

)( Cc1 ≤≤ , and ∑ =
=

C

1c cnn
. 

In order to evaluate the model, the service times, visit ratios and user think time 
must be measured on a per-class basis. Given a C -tuple of sessions 

),...,,( C21 NNN  belonging to the C  classes, which are simultaneously serviced 
by the web application, the algorithm [4] computes the average response time on a 
per-class basis. 

The model validation presented in [4] was executed in J2EE environment, while in 
this paper the model was demonstrated and validated in ASP.NET environment. 

3 Contributions 

We have implemented a three-tier ASP.NET test web application (Figure 2). It has 
been slightly modified compared to a typical web application to suit the needs of 
the measurement process. 

 
Figure 2 

The test web application architecture 

Thereafter, with the help of the performed measurements we demonstrated and 
validated the model in ASP.NET environment, namely, we estimated the input 
values of the model parameters from the results of the measurement process, 
implemented the extended MVA algorithm with the help of MATLAB [13], 
finally, we evaluated and validated the model in ASP.NET environment. 



3.1 Estimation of the Model Parameters 

The input parameters of the model are the number of tiers M , respectivelly on a 

per-class basis the number of customers ),...,,( C21 NNN  (simultaneous browser 

connections), the average user think time cZ , for mQ  the average service time 
cmS ,  and the visit ratio cmV ,  ( Mm1 ≤≤ , Cc1 ≤≤ ). 

The web application was designed in such a way that the input values of the model 
parameters can be determined from the results of the measurement process. Each 
page and class belonging to the presentation, business logic or database was 
measured separately. 

During the measurements the number of tiers was constant (three). There were 
two classes. The number of sessions of one class was fixed at 10, while the 
number of simultaneous browser connections of the other class was varied. In 

order to determine cZ  we averaged the sleep times in the user scenario per class. 

To determine cmS ,  we averaged the service times of each page and class 
belonging to the given tier and class. The visit ratios can be estimated as 

c

cm
cmV

λ
λ ,

, ≈
 [4], where cm,λ  is the number of requests serviced by the given tier 

and belonging to the given class, and cλ  is the number of requests belonging to 
the given class of the application (the total number of requests per class). In order 

to determine cm,λ  we summed the requests of each page and class belonging to 
the given tier and class. 

3.2 Model Evaluation by a MATLAB Implementation of the 
MVA Algorithm 

We implemented an extension of the MVA algorithm for closed queueing 
networks with the help of MATLAB. A part of our MATLAB script can be 
observed in Figure 3, and the whole script can be downloaded from [14]. 

Given the number of tiers, respectivelly on a per-class basis the number of 
customers, the average service times, the visit ratios and the average user think 
time, the average response time per class are computed. 



 
Figure 3 

A part of the implementation of the extended MVA algorithm 

3.3 Model Validation 

In this section, our experimental setup and experimental validation of the model in 
ASP.NET environment is demonstrated. 

3.3.1 Experimental Setup 

The web server of our test web application was Internet Information Services (IIS) 
6.0 [15] with ASP.NET 1.1 runtime environment [16], one of the most frequent 
technologies among commercial platforms. The database management system was 



Microsoft SQL Server 2000 with Service Pack 3. The server runs on a 2.8 GHz 
Intel Pentium 4 processor with Hyper-Threading technology enabled. It had 1GB 
of system memory; the operating system was Windows Server 2003 with Service 
Pack 1. 

The emulation of the browsing clients and the measuring of the response time was 
performed by ACT (Application Center Test), a load generator running on another 
PC on a Windows XP Professional computer with Service Pack 2 installed. It runs 
on a 3 GHz Intel Pentium 4 processor with Hyper-Threading technology enabled, 
and it also had 1GB system memory. The connection among the computers was 
provided by a 100 Mb/s network. 

ACT [17] is a well usable stress testing tool included in Visual Studio .NET 
Enterprise and Architect Editions. The test script can be recorded or manually 
created. Virtual users send a list of HTTP requests to the web server concurrently. 

Each test run takes 2 minutes and 10 seconds warm-up time for the load to reach a 
steady state. In the user scenarios, sleep times are included to simulate the realistic 
usage of the application. There were two classes of sessions: a database reader and 
a database writer. The number of simultaneous browser connections of one class 
was fixed at 10, while the number of simultaneous browser connections of the 
other class was varying, and we measured the average response time per class 
(Figure 4) and the factors which are necessary to determine the input values of the 
model parameters. These measured factors are the number of the requests and the 
average service time that belong to each page and class, and the total number of 
requests on a per-class basis. 

The results presented in Figure 4 (and Figure 5) correspond to the common shape 
of response time and throughput performance metrics. 

 
Figure 4 

The observed response time and throughput (10 writer sessions) 



Increasing the number of concurrent reader clients, the reader throughput (served 
requests per second) grows linearly, while the average reader response time (ms) 
advances barely. After the saturation the reader throughput remains approximately 
constant, and an increase in the reader response time can be observed. In the 
overloaded phase, the reader throughput falls while the reader response time 
becomes unacceptable high. 

Since the number of writer session is fixed 10, the average writer response time 
advances barely. Before the saturation the writer throughput decreases linearly, 
after the saturation it remains approximately constant, and in the overloaded phase 
it falls. 

 
Figure 5 

The observed response time and throughput (10 reader sessions) 

3.3.2 Performance Prediction 

As a last step, we experimentally validated the model to demonstrate its ability to 
predict the response time of ASP.NET web applications. The observed and 
predicted response times for the two classes are depicted in Figure 6 and Figure 7. 
We have found that the model predicts the response time well when the number of 
sessions is below about 30, and for higher workloads the model fails to capture 
response times. 

In order also to predict the response time for high workloads, the model must be 
enhanced to handle the limits of the four thread types in .NET thread pool [18] 
(Figure 8), since our previous work have proven by a statistical method (chi 
square test of independence [19]) that the limits of the thread types are 
performance factors [20]. The model may be enhanced by other features. These 
are subjects of future work. 



 

 

  
Figure 6 

The observed and predicted response times (10 writer sessions) 



 

 

 
Figure 7 

The observed and predicted response times (10 reader sessions) 



 
Figure 8 

Partitioning the threads in the .NET thread pool 

Conclusion and Future Work 

We demonstrated and validated the queueing model in ASP.NET environment, 
namely, the input model parameters were estimated from the measurements on a 
per-class basis, the extended MVA evaluation algorithm was implemented with 
the help of MATLAB, and a measurement process was executed in order to 
experimentally validate the model. 

Our results have shown that the model predicts the response time well when the 
number of sessions is below about 30, and for higher workloads the model fails to 
capture response times. The enhancement of the model and the validation of the 
enhanced model is a subject of future work. 

References 

[1] R. Jain: The Art of Computer Systems Performance Analysis, John Wiley 
and Sons, 1991 

[2] A. Willig: Performance Evaluation Techniques, Lecture Notes, Potsdam, 
2004 

[3] D. A. Manescé, & V. A. F. Almeida: Capacity Planning for Web Services, 
Prentice Hall, 2002 

[4] B. Urgaonkar: Dynamic Resource Management in Internet Hosting 
Platforms, Dissertation, Massachusetts, September 2005 

[5] S. Bernardi, S. Donatelli, & J. Merseguer: From UML Sequence Diagrams 
and Statecharts to Analysable Petri Net Models, Proceedings of ACM Proc. 
International Workshop Software and Performance, 2002, pp. 35-45 

[6] P. King, & R. Pooley: Derivation of Petri Net Performance Models from 
UML Specifications of Communication Software, Proceedings of Proc. 
25th UK Performance Eng. Workshop, 1999 

[7] U. Herzog, U. Klehmet, V. Mertsiotakis, & M. Siegle: Compositional 
Performance Modelling with the TIPPtool, Proceedings of Performance 
Evaluation, vol. 39, 2000, pp. 5-35 



[8] M. Bernardo, & R. Gorrieri: A Tutorial on EMPA: A Theory of Concurrent 
Processes with Nondeterminism, Priorities, Probabilities and Time, 
Proceedings of Theoretical Computer Science, vol. 202, 1998, pp. 1-54 

[9] A. S. Gilmore, & J. Hillston: The PEPA Workbench: A Tool to Support a 
Process Algebra-Based Approach to Performance Modelling, Proceedings 
of Proc. Seventh International Conference Modelling Techniques and 
Tools for Performance Evaluation, 1994, pp. 353-368 

[10] Microsoft .NET Homepage - http://www.microsoft.com/net/ 

[11] S. Kounev, & A. Buchmann: Performance Modelling of Distributed E-
Business Applications using Queueing Petri Nets, Proceedings of IEEE 
International Symposium on Performance Analysis of Systems and 
Software (ISPASS'03), 2003 

[12] M. Resiser, & S. S. Lavenberg: Mean-Value Analysis of Closed Multichain 
Queuing Networks, Proceedings of Journal of the Association for 
Computing Machinery, vol. 27, 1980, pp. 313-322 

[13] MATLAB - http://www.mathworks.com/products/matlab/ 

[14] Our MATLAB scripts can be downloaded from – 
http://avalon.aut.bme.hu/~agi/research/ 

[15] Internet Information Services 6.0 – 
http://www.microsoft.com/WindowsServer2003/iis/default.mspx  

[16] ASP.NET Homepage - http://asp.net/ 

[17] J. Aldous, L. Finnel: Performance Testing Microsoft .NET Web 
Applications, Microsoft Press, 2003 

[18] J. D. Meier, S. Vasireddy, A. Babbar, & A. Mackman: Improving .NET 
application performance and scalability (Patters & practices), Microsoft 
Corporation, 2004 

[19] C. H. Brase, & C. P. Brase: Understandable statistics, D. C. Heath and 
Company, 1987 

[20] Á. Bogárdi-Mészöly, Z. Szitás, T. Levendovszky, & H. Charaf: 
Investigating Factors Influencing the Response Time in ASP.NET Web 
Applications, Proceedings of Lecture Notes in Computer Science, 2005 


