
Information Extraction with AI Planning

Csaba Dezsényi, Tadeusz Dobrowiecki, Tamás Mészáros
Budapest University of Technology and Economics, Department of Measurement
and Information Systems, Budapest, Hungary
{dezsenyi, dobrowiecki, meszaros}@mit.bme.hu

Abstract: Autonomous information systems, which answer complex queries by extracting
information from electronic sources written in natural language, must be designed for
maximum flexibility and adaptivity. This paper proposes an approach that is based upon
the library of elementary document processing modules organized adaptively from query to
query into an information-processing network. This network is both a tool of the scheduling
and controlling the execution of the modules and a framework for the semantic fusion of
heterogeneous information chunks. In the present paper the algorithmic background of the
network design is presented in detail.

Keywords: document processing, planning, information extraction, adaptivity

1 Introduction

The rapid and wide spread of the Internet resulted in a huge amount of online
information. However, the exploitation of the available information requires
endless human effort. The investigation of the automated information processing
acquired thus a significant role in the past decade, both in the business and in the
sciences. Related software systems and applications contain more and more of the
built-in intelligence, on the other hand the traditional solutions slowly become
ineffective and labor-intensive.

One of the most important research topics is the Information Extraction (IE). Its
purpose is to automatically extract relevant pieces of information from documents
containing human-written texts [1]. Various document analysis and processing
techniques related to the IE are intensively used in an ever growing spectrum of
applications. We can find them in simple information processing tools (e.g. spam
filters, personal web assistants), but also in large, corporation-wide solutions (e.g.
knowledge management and decision support systems, customer relation
management solutions, knowledge intensive search engines). IE methods and
algorithms are based on several distinct approaches, like statistics [2], pattern
fitting [3], machine learning [4], natural language processing [5], and many others.

To extract relevant information from a document and achieve significant
performance it is not sufficient to use a single algorithm, multiple processing steps
should be applied. To see the reasons consider the aim of developing an
application that retrieves economic articles from news portals, extracts simple
facts about companies and persons, and puts them into the application’s
knowledge base. Several document processing tasks are required to extract such
information. The article should be extracted from the HTML page, the word and
sentence boundaries marked, the company and person names identified in the text,
morphological analysis and a sentence parsing to extract simple subject-predicate-
object triplets performed, finally e.g. the statistical analysis should be used to
calculate relevancies for controlling local search. It is relatively simple to
implement and execute such steps separately. These modules, however, should
work in concert to produce adequate results for the complex extraction tasks.

The R&D of such complex IE systems was done in isolation so far. The document
processing subsystems were mostly based on individual applications, with
different architectures, datamodels and working mechanisms. No guidelines, de
facto rules existed that could assist the fusion of document processing modules
into a whole integrated system. The purpose of the present research is to design a
general document analysis and processing framework that can facilitate the
creation of arbitrary complex IE applications.

The general principle is to analyze a complex query, to select special purpose
document processing modules and to organize them into a network accordingly to
the structure of the query, then to execute this network adaptively fusing on the
way the particular information chunks into a complex answer. To this aim a
suitable formalism and context independent framework has been designed, which
involves general principles, architectural considerations, and methodological
guidelines [7]. Suitable data models and interfaces have been created that enable
the usage of the framework in a wide range of applications.

There are two key challenges in the research: one is the design of proper
datamodels that are suitable for fusing together the isolated results of different
processing modules, producing thus semantically linked and coherent result of the
whole processing operation [7]. The second is the automated planning of the
processing schema that determines the running sequence and collaboration of the
processing modules. In this paper the algorithm for the design of the automated
document processing schema, based on AI planning techniques, is presented.

2 The Information Extraction Flow

Generally information extraction can be divided into the retrieval, the document
processing and the extraction steps (Fig. 1). First, a document has to be retrieved

from the source environment of an application. The result is an initially structured
document. In the simplest case, an application may require only text files,
iteratively read from a local directory. A more autonomous solution would apply
an intelligent retrieval agent that can search the Internet for relevant documents
[6]. The retrieval phase can also include format conversion, document merging or
splitting, and other required preprocessing.

Figure 1

The main phases of the information extraction

The second step is to process the document in several ways to produce various
semantically structured representations of the original source, which we call
views. These views contain the demanded chunks of information and yield the
input to the third step, where the information is extracted and stored in a local
knowledge repository of the application.

In traditional solutions, the outlined subsystems are hard coded and specific to the
application. Our aim is to develop a general framework that is able to receive
arbitrary document analyzer and processing modules (DA - document analyzer)
and datamodel configurations (views) and to adaptively solve various IE task for
an application. The model of the whole information extraction process, initiated
and concluded in the application is presented in Fig. 2.

Figure 2

Query based adaptive information extraction

A particular application represents well-defined information demands that can be
formulated as an abstract (explicit or implicit) query. By the analysis of this query
we can determine the required logical representations (views) of the source
documents that are necessary for the extraction. The query may also determine the
possibly relevant set of information sources for the retrieval process.

The framework contains several DAs that can be applied to produce views. DAs
can also depend on each other, thus the flow of the processing is not trivial. With
the list of required views, however, the appropriate processing schema can be
planned automatically. After retrieving a new source document, the framework
will apply the planned processing operations to it. The results are the required
logical views. It is important that the results of the independent DAs should be
semantically linked and coherent, thus the framework must ensure the proper
integration of the views. The semantically integrated set of resulting views is
called the view network (see Fig. 2) [7].

3 Views and Document Analyzer Modules

Traditional document processing modules are usually complete processing units.
In our approach they are basic building blocks that can be applied in various ways
to construct complex and adaptive processing schema. Therefore, the modules
should be designed for reusability. They also should be able to reuse the partial
results of each other, if necessary or practical. They should provide proper
methods for fine tuning and should be sufficiently scalable. Based on these
objectives we have proposed an abstract document analyzer model. This model
ensures that the framework can handle the processing problems uniformly,
without referring to concrete module implementations. It is also responsible for
producing semantically linked and coherent results. This model is presented in
detail in [7], here we describe only that part which is essential in the presentation
of the planning algorithm.

Figure 3

Example document processing module with its input and output views

The task of DA is to recognize certain elements in its input document view and
transform them to its output view (Fig. 3). The resulting view of a DA of a

particular type is a kind of information projection of the source that contains the
transformed information in a new, semantically structured form. The views are
typed, where the type defines what kind of information is marked in the view and
yields its structure by suitable definitions. DAs can operate on one or more views.
The input to the framework is an initial view that contains the original source
document after the retrieval, with its initial structure, while the set of all the
created views in the framework is the complete result of a document processing.
The datamodel that contains all the semantically linked views generated from one
source document is the view network.

The views are implemented as special XML documents, because it perfectly fits
the demands of carrying semantically marked information. XML is also a
widespread standard, thus we could benefit from the application of various
standard freely available tools (e.g. DOM parser, XSchema validator, XPath and
XSLT processor, etc. [10]).

4 Planning the Document Processing Schema

The task of the framework is to produce the required views (defined by the
application) by applying proper DAs to a source document. The challenge is to
design an effective planning algorithm that can produce a processing schema able
to solve the given task. The algorithm should draw on the available DAs and the
incoming document features. The main objective is to make it as autonomous as
possible, to deploy the framework to different application environments with
minimum effort on manual configurations (the configuration of the framework
should be data-driven, not procedural, which facilitates the application
independence). Moreover, the set of the available DAs can also change during the
lifetime of an application, e.g. by introducing new modules for increased
performance or by implementing new features.

Selecting the required DAs for execution and planning of the right running
sequence is not trivial, because some components may depend on the outputs of
the others, some can work on several views, or the same result could be produced
by applying different processing components. The basis of the approach is the
adaptation of the philosophy of the standard AI planning techniques (i.e. STRIPS
based partially ordered planning [8]). The application of such technique is
plausible due to the analogy of the problem. However, the adaptation is far from
trivial, because there are essential differences also. In the following we introduce
first the application of the AI planning to the IE, then we discuss the special issues
in detail.

4.1 Adopting Standard AI Planning

Concepts central to the standard STRIPS-based partially ordered AI planning can
be matched easily with those of the framework (see Table 1).

Table 1
Standard AI planning concepts vs. the concepts of the framework

Standard AI Planning Document Processing Framework
State of the environment State of the view network – availability of views with

specific type and content
Operator DA that changes the state of the view network by

producing new views
Initial state Initial view - the source document in an initial structure
Goal state Existence of specific views required by the application
Precondition Type definitions of input views of a module required for

its execution
Effect Type definitions of output views of a module produced

after its execution
Action description Implementation of the module, which can be executed by

the framework
Partially ordered plan Final document processing schema

The aim of the processing is posed as a number of views containing the demanded
information. Then the graph of the plan is constructed regressively by matching
still unfulfilled preconditions to the effects of the newly introduced operators until
there are no unfulfilled preconditions in the graph [8]. However, AI planning
cannot be adopted blindly. Switching over from the general planning domain to
the information extraction introduces two essential simplifications and one
essential difficulty. The former is discussed shortly below, whilst the latter is
detailed in the next chapter.

A typical difficulty in traditional planning is when one operator deletes the already
satisfied preconditions required by the other. This problem can be handled by so-
called protected links between the effects and the satisfied preconditions (see more
details in [8]). An advantageous feature of the framework is that the effects of the
operators can only contain positive literals. DAs can incrementally produce new
views, but deleting them is against the philosophy of information extraction.
Another simplification is that there is no need for the linearization of the partially
ordered plan, because the modules can be run in parallel.

4.2 Handling Conflict Situations

Significant problem is handling conflicting situations. A common demand in the
state-of-the-art IE applications is to use hybrid solutions in document processing

phases. Typical example is the combination of statistical and symbolical methods,
aggregating the advantages of the both approaches. We can also have a reliable
tool for previously known cases in one processing task, but we also want to handle
unknown cases with a heuristic tool. Still other examples can be the language, and
domain dependent processing modules. There are cases when more DAs may be
used for a processing task, and the optimal selection mechanism would also
depend on the kind of the conflict. In such case the problem should be analyzed in
detail, considering the possibly occurring cases, and the planning algorithm should
be extended with the capability of handling such situations. After introducing the
main principle, we present the algorithm through a simple example scenario.

Conflict situation occurs, when there is more than one DA for producing the
required view. A standard AI planner would handle such situations with a simple
non-deterministic selection, because the logical descriptions of the effects are the
same. However, DAs with the same effect description can produce the same type
of views with significantly different quality of the content. It is impossible or
impractical to formally describe such complex difference in the produced content,
thus we cannot handle it solely in the planning time. In addition, some cases
would require the selection of more than one conflicting DA and to integrate the
contents of the results into a single view. Therefore, in our approach new elements
are introduced in the planning algorithm, in the execution scheduler, and in the
plan as special additional operators (Fig. 4).

If the planner takes notice that more than one module can be found for producing
the required type of view, it can make a preselection by evaluating the available
metadata definitions of the modules. E.g. it can recognize that certain modules are
offline, or outdated. This first rough selection is used to reduce the number of
conflicting modules at the planning time, if possible, reducing this way the
branching factor, which can pop up in the execution time.

The decision about the remaining set of modules can only be made during the
execution. Consequently we have to introduce special operators into the plan that
enable the evaluation of the results after running the modules. The planner inserts
all of the mentioned modules into the plan, but marks them with conditional
branch flags, and links their outputs to a fusion module. Each conflicting module
forms one branch marked by a binary flag. If the corresponding flag is true, the
branch will be executed in the execution phase, when its preconditions are
fulfilled. Flags are controlled by arbiters, instantiated by the planner for each
conflicting set of modules. An arbiter controls the running of the conflicting
modules at the execution time by re-setting the corresponding branch flags. After
one or more branches are executed and the results evaluated, arbiter can modify
the flags to rerun the modules in different configuration if necessary.

The task of fusion module is to merge the incoming views (all of the same type)
into a single view. The algorithm is based on the comparison of the information
elements in the views. If the arbiter strategy enables only one valid view, the

fusion module simple passes it through. However, if the strategy is to integrate
several views, the merging is necessary and not trivial.

Figure 4

(a) Main elements of the algorithm, (b) Strategy definition for the conflicting modules

Particular control strategy built-in into an arbiter and fusion module is associated
with the particular set of the DAs (defined as a kind of macro operator, Fig 4b).
Typical choice can be the priority-based selection of the branches, or executing all
branches together, merging the results (see later).

After the conflicting modules have been put into the plan, the arbiter and the
fusion modules initialized, and the modules are marked with the corresponding
branch flags, the planner takes the next unsatisfied precondition and attempts to
find a module that can produce the required view. The only additional feature is
that the planner has to spread backward the conditional flags properly to the
preceding modules in the branches (see details in the example later).

4.3 Example Scenario

As example application, consider a system that extracts economical facts about
relevant persons and companies, e.g. a firm is liquidated, or a person is appointed
to a new job, etc. The underlying framework’s configuration contains the
following required views and processing modules (Table 2 and 3).

Table 2
View types in the example

View Description
H Original HTML source page with metadata
A Extracted textual article, segmented e.g. as title, authors, date, and content
T Tokenized text, textual parts segmented to sentences, words, and other tokens
P Part of speech of words
S Word stems
N Recognized names (e.g. company and person names)
C Recognized concepts (e.g. defined in the application’s ontology)
E Parsed sentence trees
F Extracted fact candidates

Table 3
Processing modules in the example

Module Precondition
(view)

Effect
(view)

Description

W H A Web-wrapper: has predefined rules for known
Internet sources, e.g. we can extract the articles
from a known portal with semantic structure [9]

CE H A Content extractor: tries to extract the content
from a webpage, cutting off menus,
advertisements, etc.

TO A T Tokenizer: marks word and sentence boundaries
ST T S Stemmer: finds lemmatized word forms
PO T P Part of speech tagger: finds part of speech of

words
NL S N Lexicon-based named entity recognizer:

extracts relevant names using predefined lexicons
NH S N Heuristic named entity recognizer: extracts

relevant names using patterns and algorithms
CO S C Concept finder: marks concepts found in the

application’s knowledgebase
SP P E Sentence parser: analyzes structure of sentences
FP E N F Fact extractor: based on fitting simple patterns

on analyzed tokens
FS P N C F Fact extractor: collects subject-predicate-object

triplets based on syntactic structure
S - H Start: creates initial state (initial view)
G F - Goal: defines the required views

The final plan can be seen in the Fig. 5. Fusion modules are rounded squares, and
branch conditions are indicated be-low the DAs There are three conflicting DA
sets, each one connected to its fusion module (FA, FN, FF). Each conditional
branch is marked with proper flags (e.g. A(w) and A(ce) at the conflict of W and
CE due to the same effect A). If a conditional branch has a preceding DA, the flag
has to be propagated backward. See e.g. the CO module, which receives F(fp)
flag from FP and will be executed if the AF arbiter decides to set the F(fp) flag on.
If a module forks out into more branches (see e.g. ST, or PO), it receives the
disjunction of the corresponding branch flags. A module should run if at least one
of the branches is selected. However, if it receives flags of all of the following
branches, the flags are redundant and can be deleted (indicated with crosses in the
Fig. 5).

Arbiter mechanisms are different in all three conflict situations. The A branches
typically should run with a priority mechanism: if an HTML page has an
associated wrapper definition, then W should run, otherwise CE tries to extract

the textual content with a heuristic algorithm. Thus, arbiter AA first tries to execute
W by setting A(w) true and A(ce) false. If W doesn’t yield result, A(ce) will be set
true, which enables the execution of CE. Arbiter AN will execute each branch
together, and FN will merge the results, because that way the final document view
will contain the most of the recognized named-entities. Arbiter AF can also
execute each branch in parallel.

Figure 5

The planned document processing schema for a particular task

When the planner stops with a complete partially ordered plan, we obtain the final
schema presented in Fig. 5. If successive branches would be required in the plan,
the spreading of the flags can also be done simply, leading however to
conjunctions. It means that a module before two successive branches will run only
if each branch is selected for the execution.

Conclusions and Further Work

We presented a novel solution for information extraction, where we have
developed an adaptive document analysis and processing framework. The
proposed approach and algorithm show two principal advantages. Firstly, it fits
the standard AI planning algorithms, where arbitrarily complex and numerous
conditional branches can be handled effectively. Secondly, the method precisely
separates the algorithmic steps of the decision making and the result fusion.
Furthermore, it enables the usage of practical strategies for the real cases.

An additional demand in the framework is the disjunctive preconditions, which
would model the situation, when a DA is able to process different type of input
views. A sentence and word tokenizer e.g. can run on an article and also on a
scientific-paper view. These kinds of conflict situations also can be handled with
the outlined mechanism.

Currently the prototype version of the framework is being implemented, with a
number of document processing modules. This prototype will serve to tune further
the basic algorithm, and also to experiment with the suitable heuristic arbitration
strategies. Current document processing modules are oriented toward short
electronic news in Hungarian, however the architecture and the functioning of the
framework are language and context independent.

References

[1] Cunningham, H.: Information Extraction – a User Guide. Research
Memorandum CS–97–02, Department of Computer Science, University of
Sheffield, January (1997)

[2] Neto, J. L., Santos, A. D., Kaestner, C. A., Freitas, A. A.: Document
Clustering and Text Summarization. In Proc. of the 4th Int. Conf. on
Practical App. of Knowledge Discovery and Data Mining, pp. 41-55,
London, UK (2000)

[3] Hammer, J., Breunig, M., Garcia-Molina, H., Nestorov, S., Vassalos, V.,
Yerneni, R.: Template Based Wrappers in the TSIMMIS System. In Proc.
of the 23rd ACM SIGMOD Int’l Conf. on Management of Data, Tucson,
Arizona (1997)

[4] Kushmerick, N., Thomas, B.: Adaptive Information Extraction: Core
Technologies for Information Agents. In Intelligent Information Agents
R&D in Europe: An AgentLink perspective, Lecture Notes in Computer
Science 2586, Springer, (2003)

[5] Mitkov, R. (ed.): The Oxford Handbook of Computational Linguistics.
Oxford University Press, Oxford (2003)

[6] Varga, P., Mészáros, T., Dezsényi, Cs., Dobrowiecki, T.: An Ontology-
based Information Retrieval System. In Proc. of the IEA/AIE-2003,
Laughborough, UK, Lecture Notes in Computer Science vol. 2718
Springer-Verlag (2003)

[7] Dezsényi, Cs., Mészáros, T. Dobrowiecki, T.: Parser Framework for
Information Extraction. Proc. of the EUROFUSE Workshop on Data and
Knowledge Engineering, Sept 22-25, Warsaw, Poland (2004)

[8] Russell, S., Norvig, P.: Artificial Intelligence. A Modern Approach.
Prentice Hall Inc. (1997)

[9] Kuhlins, S., Tredwell, R.: Toolkits for Generating Wrappers.
Net.ObjectDays-2002, Erfurt, Germany, October (2002)

[10] Information about several XML standards can be found on
http://www.w3c.org

	1 Introduction
	2 The Information Extraction Flow
	3 Views and Document Analyzer Modules
	4 Planning the Document Processing Schema
	4.1 Adopting Standard AI Planning
	4.2 Handling Conflict Situations
	4.3 Example Scenario

