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Abstract: Hybrid system has come to mean a system which is an amalgamation of 
continuous and discrete inputs, outputs states, and dynamic equations. Hybrid systems 
arise when the continuous and the discrete meet. Particularly, hybrid systems arise from 
the use of finite-state logic to govern continuous physical processes (as in embedded 
control systems) or from topological and network constraints interacting with continuous 
control (as in networked control systems). This paper provides an introduction to hybrid 
systems, building them and shows some description of modeling language for Hybrid 
Systems. 

1 Introduction 

Hybrid systems are those in which a melding of two worlds—the analog and the 
digital-exists. Hybrid systems are all around us. Such systems arise 
whenever one mixes logical decision mak-ing with the generation of continuous-
valued control laws. These systems are driven on our streets, used in our factories, 
and flown in our skies. Hybrid systems are systems that involve interaction 
between discrete and continuous dynamics. Such systems have been studied with 
growing interest and activity in recent years. Very often, the same phenomenon 
can be described either by a discrete model or a continuous one, depending on the 
context and purpose of the model [1]. One reason for the interest is that modeling 
and simulation of a complex system often require a combination of mathematical 
models from a variety of engineering disciplines. Practical control systems 
typically involve switching between several different modes, depending on the 
range of operation. Basic aspects of hybrid systems were treated in [6,7]. For 
stability analysis, see [3] and references therein. Related methods were discussed 
for discrete systems in [2] and on an abstract level for hybrid systems in [4]. So, 
hybrid systems arise in embedded and networked control. 



 

Figure 1 
Block diagram of hybrid systems 

More specifically, real-world examples of hybrid systems include systems with 
relays, switches, and hysteresis [5,8]; computer disk drives; transmissions, step-
per motors, and other motion controllers [9]; constrained robotic systems [11]; 
automated highway systems (AHSs) [10]; flight control and management systems 
[12]; multi-vehicle formations and coordination [13]; analog/digital circuit 
codesign and verification; and biological applications [14]. 

Figure 2 
Typical networked control system setup and information flows 

Adding to the complexity is the case where sensing, control, and actua-tion are not 
hardwired but connected by a shared network medium; see Fig. 2. In the 
autonomous case, the system evolution itself may fall naturally into a finite 
number of different phases , between which abrupt changes in continuous 
dynamics (switching) or continuous states (jumps or resets) occur. In the 
controlled case, a simple finite state machine may be used to regulate a physical 
process, such as may arise even in a simple thermostat. In more complicated 
situations, a mixture of autonomous and controlled phe-nomena may be present. 
See Fig.1. 



1.1 The Need for Hybrid Control 

To deal with large complex systems engineers are usually inclined to use a 
combination of continuous and discrete controllers. The reasons why continuous 
controllers are used are many: 

• Interaction with the physical plant, through sensors and actuators, is 
essentially analog, i.e. continuous, from the engineering point of view. 

• Continuous models have been developed, used and validated extensively in 
the past in most areas that interest control engineers (e.g. electrical and 
mechanical systems, electromagnetic systems, etc.). 

• Powerful control techniques have already been developed for many classes 
of continuous systems. Moreover, in conjunction with the reliable continuous 
models, proofs of guaranteed performance can be obtained for these 
techniques. 

Example 1: Systems with switches and relays 

Physical systems with switches and relays can naturally be modeled as hybrid 
systems. Sometimes, the dynamics may be considered merely discontinuous, such 
as in a blown fuse. In many cases of interest, however, the switching mechanism 
has some hysteresis, yielding a discrete state on which the dynamics depends. This 
situation is depicted by the multi-valued function H  shown Fig. 3 (left). Suppose 
that the function H  models the hysteretic behavior of a thermostat. Then a 
thermostatically controlled room may be modeled as follows: 

)),(,( 0 uxxHxfx −=&   (1) 

where x  and 0x  denote actual and desired room temperature. The function f  
denotes the dynamics of temperature, which depends on the current temperature. 
Note that this system is not just a differential equation whose right-hand side is 
piecewise continuous. There is “memory” in the system, which affects the value of 
the vector field. Indeed, such a system naturally has a finite automaton associated 
with the hysteresis function H, as pictured in Fig. 3 (right). The notation! 
[condition] denotes that the transition must be taken when “enabled.” That is, the 
event of x attaining a value greater than or equal to ∆ triggers the discrete or phase 
transition of the underlying automaton from +1 to −1. 



Figure 3 
(left) Hysteresis function, H, (right) finite automaton associated with H 

2 From Continuous To Hybrid 

This part show ordinary differential equations (ODEs) as a base continuous model. 

2.1 Base Continuous Model: ODEs 

The base continuous dynamical systems dealt with are defined by the solutions of 
ODEs: 

))(( txfx =&   (2) 

where 
nRXtx ⊂∈)( . The function 

nRXf →:  is called a vector field on 
nR . We assume existence and uniqueness of solutions. Actually, the system of 

ODEs in (2) is called autonomous or time invariant because its vector field does 
not depend explicitly on time. If it did depend explicitly on time, it would be 
nonautonomous or time varying, which one might explicitly note using the 
following notation: 

)),(()( ttxftx =&  (3) 

An ODE with inputs and outputs is given by 

))(),(()(
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=
=&

 (4) 

The functions (.)u  and (.)y  are the inputs and outputs. Whenever inputs are 

present, we say that (.)f  is a controlled vector field. 



Differential inclusions: A differential inclusion allows the derivative to belong to 
a set and is written as 

))(()( txFtx ∈&  (5) 

where F(x(t)) is a set of vectors in 
nR . It can be used to model nondeterminism, 

including that arising from controls or disturbances. 

2.2 Adding Discrete Phenomena 

Hybrid systems are those that involve continuous states and dynamics, as well as 
some discrete phenomena corresponding to discrete states and dynamics. As 
described above, our focus in this chapter is on the case where the continuous 
dynamics is given by a differential equation 

0),()( ≥= tttx ξ&  (6) 

then, )(tx  is considered the continuous component of the hybrid state, taking 

values in some subset 
nR  The vector field )(tξ  generally depends on )(tx  and 

the aforementioned discrete phenomena. Here, )(tξ  in (5) is a controlled vector 

field which generally depends on )(tx , the continuous component )(tu  of the 
control policy, and the aforementioned discrete phenomena. In this section, we 
identify the discrete phenomena alluded generally arise in hybrid systems. They 
are as follows: 

• autonomous switching 

• autonomous jumps 

• controlled switching 

• controlled jumps 

Next, we analyze each of these discrete phenomena in turn. 

Autonomous Switching 

Autonomous switching is the phenomenon where the vector field )(tξ  changes 

discontinuously when the continuous state (.)x  hits certain “boundaries” [15]. 

Example 2: Consider the problem of controlling a household furnace. The 
temperature dynamics may be quite complicated, depending on outside 
temperature, humidity, luminosity; insulation and layout; whether incandescent 
lights are on, doors are closed, vents are open, people are present; and many other 
factors. Thus, let’s just say that when the furnace is On, the dynamics are given by 



))((1 txfx =& , where )(tx  is the temperature at time t ; likewise, when the 

furnace is Off, let’s say that the dynamics are given by ))((0 txfx =& ˙ The full 
system dynamics are that of a switched system: 

))(()( txfx tq=&
 (7) 

where 0)( =tq or 1 depending on whether the furnace is Off or On, respectively. 

Autonomous Jumps 

An autonomous jump is the phenomenon where the continuous state (.)x  jumps 
discontinuously on hitting prescribed regions of the state space [16]. We may also 
call these autonomous impulses. The simplest examples possessing this 
phenomenon are those involving collisions. 

Example 4:  (Bouncing Ball). Consider the case of the vertical motion of a ball of 
mass m  under gravity with constant g . The dynamics are given by 
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=
&
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 (8) 

Further, upon hitting the ground (assuming downward velocity), we instantly set 
v  to vρ− , where [ ]1,0∈ρ  is the coefficient of restitution. We can encode the 
jump in velocity as a rule by saying 

If at time t , 0)( =tx  and 0)( <tv , then )()( tvtv ρ−=+
. 

In this case, (.)v  is piecewise continuous (from the right), with discontinuities 
occurring when 0=x . This “rule” notation is quite general, but cumbersome. 
We have found it more desirable to use the following equational notation: 

)()( tvtv ρ−=+
   { }0|),0())(),(( <∈ vvtvtx  (9) 

Here, we have used Sontag’s evocative discrete-time transition notation [17] to 

denote the “successor” of )(tx . 

Controlled Switching 

Controlled switching is the phenomenon where the vector field (.)ξ  changes 
abruptly in response to a control command, usually with an associated cost. This 
can be interpreted as switching between different vector fields Controlled 



switching arises, for instance, when one is allowed to pick among a number of 
vector fields: 

)(xfx q=&
 , { }.,...,2,1 NQq ≈∈  (10) 

Here, the q  that is active at any given time is to be chosen by the controller. If 
one were to make the choice an explicit function of state, then the result would be 
a closed-loop system with autonomous switches. 

Example 5: (Satellite Control). In satellite control, one encounters 

veffτθ =&&
 (11) 

where θ  and θ&  are the angular position and velocity and { }1,0,1−∈v  
depending on whether the reaction jets are full reverse, off, or full on. 

Controlled Jumps 

A controlled jump is the phenomenon where the continuous state (.)x  changes 
discontinuously in response to a control command, usually with an associated cost 
We also call these jumps controlled impulses. 

Conclusions 

In this paper, we have shown some basis about hybrid systems. For an 
introduction to hybrid systems simulation, see [18]. A survey of the hybrid 
systems literature is well beyond the scope of this chapter. For early surveys and 
more details on hybrid systems modeling, see [19, 20]. For a recent monograph on 
switching systems, see [21]. Analysis and control techniques for hybrid systems 
have been developed. See [19] for details and [22] for a summary. 
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