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Abstract: Kernel methods in learning machines have been developed in the last decade as 
new techniques for solving classification and regression tasks. Kernel methods have many 
advantages properties regarding their learning and generalization capabilities, but for 
getting the solution usually the computationally complex quadratic programming is 
required. To reduce computational complexity a lot of different versions have been 
developed. These different versions apply different kernel functions, utilize the training data 
in different ways or apply different criterion functions. This paper deals with a special 
kernel network, which is based on the CMAC neural network. Cerebellar Model 
Articulation Controller (CMAC) has some attractive features: fast learning capability and 
the possibility of efficient digital hardware implementation. Besides these attractive 
features the modelling and generalization capabilities of a CMAC are rather limited. The 
paper shows that kernel CMAC – an extended version of the classical CMAC network 
implemented in a kernel form – combines the advantages of both approaches. Its modelling 
and generalization capabilities are improved while the limited computational complexity is 
maintained. The paper shows the architecture of this network and presents the relation 
between the classical CMAC and the kernel networks. The operation of the proposed 
architecture is illustrated using some common benchmark problems. 

Keywords: kernel networks, input-output system modelling, neural networks, CMAC, 
generalization error 

1 Introduction 

Kernel machines like Support Vector Machines (SVMs) [1], Least Squares SVMs 
(LS-SVMs) [2] and the method of ridge regression [3] have beed developed in the 
last decade and proved to be efficient new approaches for solving the learning 
problem from samples. Kernel machines can be applied for linear and nonlinear 
classification and function approximation, so they can be used for solving 
problems that can be solved successfully with classical neural networks too. The 



main feature of kernel methods is that they apply a trick, which is called kernel 
trick. They use a set of nonlinear transformations from the input space to a 
"feature space". However, it is not necessary to find the solution in the feature 
space, instead it can be obtained in the kernel space, which is defined easily. 
Althogh the kernel space can be defined through the feature space, usually it is 
defined directly without fixing the nonlinear transformations of the feature space. 
This is a significant advantage, as using the kernel trick the complexity of the 
solution is greatly reduced: while the dimension of the feature space can be very 
large, even infinite, the dimension of the kernel space is upper bounded by the 
number of training samples. 

Cerebellar Model Articulation Controller (CMAC) [4] – a special feed-forward 
neural architecture, which belongs to the family of feed-forward networks with a 
single linear trainable layer – has some attractive features. The most important 
ones are its extremely fast learning capability and the special architecture that lets 
effective digital hardware implementation possible [5]. The CMAC architecture 
was proposed by Albus in the middle of the seventies [4] and it is considered as a 
real alternative to MLP and other feed-forward neural networks [6]. Although the 
properties of CMAC were analysed mainly in the nineties (see eg. [7]-[9]), some 
interesting features were only recognised in the recent years. These results show 
that the attractive properties of the CMAC have a price: its modelling capability is 
inferior to that of an MLP. This is especially true for multivariate cases, as 
multivariate CMACs can learn to reproduce the training points exactly only if the 
training data come from a function belonging to the additive function set [7]. 

The modelling capability can be improved if the complexity of the network is 
increased. This more complex network was proposed in [8], but as the complexity 
of the CMAC depends on the dimension of the input data, in multivariate cases the 
high complexity can be an obstacle of implementation in any way. A further 
deficiency of CMAC is that its generalization capability is also inferior to that of 
an MLP even for univariate cases. The real reason of this property was shortly 
presented in [10] and a modified training algorithm was proposed for improving 
the generalization capability. This training algorithm is derived using a regularized 
loss function, where the regularization term has some weight-smoothing effect. 

This paper presents a different interpretation of the CMAC networks and details 
why this interpretation can help to improve the quality of the network without 
increasing the complexity even in multidimensional cases. The paper shows that 
this new interpretation corresponds to a kernel machine with second order B-
spline kernel functions. The kernel interpretation may suffer from the same poor 
generalization capability, however the weight-smoothing regularization can be 
applied for the kernel CMAC too. This means that using kernel CMAC both the 
modelling and the generalization capabilities can be improved significantly. 
Moreover it can be shown that similarly to the original CMAC the kernel versions 
can also be trained iteratively, which may be important in such applications where 
real-time on-line adaptation is required. 



2 Kernel Machines 

The goal of a kernel machine is to approximate a (nonlinear) function ( )ufyd =  

using a training data set { }P
kd kyk 1)(),( =u . A kernel machine can be used for 

solving classification or regression problems. For classification the function to be 
approximated is { },1: ±→ℜNf  while for regression problems a continuous 

function ℜ→ℜNf :  should be approximated. In the kernel machines first the 
u input vectors are projected into a higher dimensional feature space, using a set 
of nonlinear functions ( ) MN ℜ→ℜ:uϕ , then the output is obtained as a linear 
combination of the projected vectors: 
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where w is the weight vector and b is a bias term. The dimensionality (M) of the 
feature space is not defined directly, it follows from the method (it can even be 
infinite). The kernel trick makes it possible to obtain the solution not in the feature 
space but in the kernel space  
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where the kernel function is formed as 

( ) ( ) ( ))()()(),( jkjkK T uuuu ϕϕ=  (3) 

In (2) the kα  coefficients serve as the weight values in the kernel space. The 
number of these coefficients equals to or less (in some cases it may be much less) 
then the number of training points [1]. The main advantage of a kernel machine is 
that the kernel function can be defined directly without using the feature space 
representation. For this purpose the kernel function should fulfill some conditions 
[11]. Kernel machines can be constructed using constrained optimization, where 
first a criterion function and some constrainst are defined and where the solution is 
obtained using Lagrange a multiplicator approach. 

Kernel machines have many different versions. The different versions apply 
different kernel functions or formulate the constrained optimization problem in 
different ways. Most often Gaussian kernels are used, but polynomial, spline, etc. 
kernels can also be applied [11]. The complexity of the solution depends on the 
form of the constraints. Using inequality constraints [1] quadratic programming is 
required to reach the solution. This approach was introduced by Vapnik and it 
results in the classical support vector machine (SVM) solution. A less complex 
solution is obtained if instead of the inequality constraints equality ones are 
applied. One approach of this version is when quadratic criterion function and 



equality constraints are used. It is called least squares support vector machine (LS-
SVM) [2]. Ridge regression is similar to LS-SVM, although its derivation is 
slightly different from that of the LS-SVM [3]. In LS-SVM instead of quadratic 
programming the solution can be obtained using simple matrix inversion. To show 
the detailes of the kernel machines is beyond the scope of this paper. These 
detailes can be found in the recently published excellent books [11], [12] and 
papers. 

3 A Short Overview of the CMAC 

CMAC is an associative memory type neural network, which performs two 
subsequent mappings. The first one - which is a non-linear mapping - projects an 
input space point Nℜ∈u  into an association vector a. The second mapping 
calculates the output ℜ∈y  of the network as a scalar product of the association 
vector a and the weight vector w: 

y(u)=a(u) Tw (4) 

The association vectors are sparse binary vectors, which have only C active 
elements, C bits of the association vector are ones and the others are zeros. As the 
association vectors are binary ones, scalar products can be implemented without 
any multiplication; the scalar product is nothing more than the sum of the weights 
selected by the active bits of the association vector. 
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CMAC uses quantized inputs, so the number of the possible different input data is 
finite. There is a one-to-one mapping between the discrete input data and the 
association vectors, i.e. each possible input point has a unique association vector 
representation. 

Another interpretation can also be given to the CMAC. In this interpretation for an 
N-variate CMAC every bit in the association vector corresponds to a binary basis 
function with a compact N-dimensional hypercube support. The size of the 
hypercube is C quantization intervals. This means that a bit will be active if and 
only if the input value is within the support of the corresponding basis function. 
This support is often called receptive field of the basis function [4]. 

The mapping from the input space into the association vector should have the 
following characteristics: (i) it should map two neighbouring input points into 
such association vectors that only a few elements - i.e. few bits - are different, (ii) 
as the distance between two input points grows, the number of the common active 
bits in the corresponding association vectors decreases. For input points far 



enough from each other - further then the neighbourhood determined by the 
parameter C – the association vectors should not have any common bits. 

This mapping is responsible for the non-linear property and the generalization of 
the whole system. The first layer implements a special encoding of the quantized 
input data. This layer is fixed. The trainable elements, the weight values that can 
be updated using the simple LMS rule, are in the second layer. The way of 
encoding, the positions of the basis functions in the first layer, determines the 
generalization property of the network. In one-dimensional cases every 
quantization interval will determine a basis function, so the number of basis 
functions is approximately equal to the number of possible discrete inputs. 
However, if we follow this rule in multivariate cases, the number of basis 
functions will grow exponentially with the number of input variables, so the 
network may become too complex. As every selected basis function will be 
multiplied by a weight value, the size of the weight memory is equal to the total 
number of basis functions, to the length of the association vector. If there are ri 
discrete values for the i-th input dimension an N-dimensional CMAC needs 
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 weight values. In multivariate cases the weight memory can be 

so huge that practically it cannot be implemented. 

To avoid this high complexity the number of basis functions must be reduced. In a 
classical multivariate CMAC this reduction is achieved by using basis functions 
positioned only at the diagonals of the quantized input space. The positions of the 
overlays and the basis functions of one overlay can be represented by definite 
points. In the original Albus scheme the overlay-representing points are in the 
main diagonal of the input space, while the basis-function-positions are 
represented by the sub-diagonal points. In the original Albus architecture the 
number of overlays does not depend on the dimension of the input vectors; it is 
always C. This means that in multivariate cases the number of basis function will 
not grow exponentially with the input dimension, it will be “only” 
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view of implementation, however this reduced number of basis functions is the 
real reason of the inferior modelling capability of the multivariable CMACs, as 
reducing the number of basis functions the number of free parameters will also be 
reduced. Here modelling capability refers to the ability that a network can learn to 
reproduce exactly the training data: a network with this ability will have no 
modelling error. 

The consequence of the reduced number of basis functions is that an arbitrary 
classical binary multivariate CMAC can reproduce exactly the training points only 
if they are obtained from an additive function [7]. For more general cases there 
will be modelling error i.e. error at the training points. It should be mentioned that 
in multivariate cases even this reduced weight memory may be too large, so 



further complexity reduction may be required. This reduction is achieved by 
applying a new compressing layer [4], which uses hash-coding. Although hash-
coding solves the complexity problem, it can result in collisions of the mapped 
weight and some unfavourable effects on the convergence of CMAC learning 
[13], [14]. As it will be seen later the proposed new interpretation solve the 
complexity problem without the application of hashing, so we will not deal with 
this effect. 

Another way of avoiding the complexity problem is to decompose a multivariate 
problem into many one-dimensional ones, so instead of implementing a 
multidimensional CMAC it is better to implement many simple one-dimensional 
networks. The resulted hierarchical, tree-structured network - called MS_CMAC 
[15] - can be trained using time inversion technique [16]. MS_CMAC greatly 
reduces the complexity of the network, however there are some restrictions in its 
application as it can be applied only if the training points are positioned at regular 
grid-points. A further drawback is that most of the simple networks need training 
even in the recall phase increasing the recall time significantly. 

A CMAC – as it has a linear output layer – can be trained by the LMS algorithm: 

( ) ( ) ( ) ( )kekkwkw ii aμ+=+1 , (6) 

where )()()()()( kkykykyke T
dd aw−=−= is the error at the k-th training step. 

Here )(kyd is the desired output for the k-th training point, y(k) is the network 
output for the same input, a(k) = a(u(k)) and μ is the learning rate. Training will 
minimize the quadratic error 
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where P is the number of training points. 

The solution of the training can also be written in a closed form 

dyAw †=∗  (8) 

where ( ) 1† −
= TT AAAA  is the pseudo inverse of the association matrix formed 

from the association vectors a(i) = a(u(i)), and ])(...)2()1([ Pyyy ddd
T

d =y  is 
the output vector formed from the desired values of all training data. The response 
of the trained network for a given input u can be determined using the solution 
weight vector: 

d
TTTTy yAAAuawuau 1* )()()()( −== . (9) 



4 Kernel CMAC 

4.1 The Derivation of the Kernel CMAC 

The relation between CMAC and kernel machines can be shown if we recognize 
that the association vector of a CMAC corresponds to the feature space 
representation of the kernel machines. This means that the non-linear functions 
that map the input data points into the feature space, are the rectangular basis 
functions. The binary basis functions can be regarded as first-order B-spline 
functions of fixed positions. 

To get the kernel representation of the CMAC we should apply (3) for the binary 
basis function. In univariate cases second-order B-spline kernels can be obtained 
where the centre parameters are the input training points. In multivariate cases the 
kernels will be different because of the reduced number of basis functions. 
However, we can apply the full-overlay CMAC, (although the dimension of the 
feature space would be unacceptable large). Because of the kernel trick the 
dimension of the kernel space will not increase: the number of kernel functions is 
upper bounded by the number of training points. Thus we can build a kernel 
version of a multivariate CMAC without reducing the length of the associate 
vector. This implies that this kernel CMAC can learn any training data set without 
error independently of the number of input variables. The multivariable kernel 
functions can be obtained as tensor products of univariate second order B-spline 
functions. This interpretation can be applied for higher-order CMACs too [8] with 
higher order basis functions (k-th order B-splines with support of C). In these 
cases CMACs correspond to kernel machines with properly chosen higher–order 
(2k-th order) B-spline kernels. 

Kernel machines can be derived through constrained optimisation. The different 
versions of kernel machines apply different loss functions. Vapnik’s SVM for 
regression applies ε-insensitive loss function [1], while LS-SVM can be obtained 
if quadratic loss function is used [2]. The classical CMAC uses quadratic loss 
function too, so we obtain an equivalent kernel representation if in the constrained 
optimisation also quadratic loss function is used. This means that the kernel 
CMAC is similar to an LS-SVM. 

The response of a trained network for a given input can be obtained by (9). To see 
that this form can be interpreted as a kernel solution let construct an LS-SVM 
network with similar feature space representation. For LS-SVM regression we 
seek for the solution of the following constrained optimisation. 
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such that )()()( kekky T
d += aw . Here there is no bias term, as in the classical 

CMAC bias term is not used. The problem in this form can be solved by 
constructing the Lagrangian 
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where kα  are the Lagrange multipliers. The conditions for optimality can be given 
by 
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Using the results of (12) in (11) the Lagrange multipliers can be obtained as a 
solution of the following linear system 
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Here TAAK = is the kernel matrix and I is a P×P identity matrix. The response of 
the network can be obtained as 
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The obtained kernel machine is an LS-SVM or more exactly a ridge regression 
solution [3], because of the lack of the bias term. Comparing (9) and (14), it can 
be seen that the only difference between the classical CMAC and the ridge 
regression solution is the term (1/γ)I, which comes from the modified loss 
function of (10). However, if the matrix AAT is singular or it is near to singular 
that may cause numerical stability problems in the inverse calculation, a 
regularization term must be used: instead of computing 1)( −TAA the regularized 

inverse 1)( −+ IAA ηT is computed, where η is the regularization coefficient. In this 
case the two forms are equivalent. 



4.2 Kernel CMAC with Weight-Smoothing 

This kernel representation improves the modelling property of the CMAC. As it 
corresponds to a full-overlay CMAC it can learn all training data exactly. 
However, the generalization capability is not improved. In the derivation of the 
kernel machines regularization and the Lagrange multiplier approach are applied. 
To get a CMAC with better generalization capability a further regularization term 
can be applied. Smoothing regularization can be obtained if a new term is added to 
the loss function of (10). The modified optimization problem can be formulated as 
follows: 
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)(iwk is a weight value selected by the ith active bit of ak, so i runs through the 
indexes where ak(i)=1. As the equality constraint is the same as in (10), we obtain 
the Lagrangian 
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The Lagrange multipliers can be obtained again as a solution of a linear system. 
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The response of the network becomes 
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5 Illustrative Experimental Results 

The different kernel versions of the CMAC network were validated by extensive 
experiments. Here only the results for the simple classification and regression 
benchmark problems are presented. The function approximation capability of the 
kernel CMAC is illustrated using the 1D (Figure 1) and 2D (Figure 2) sinc 
functions. For classification the two spiral problem (Figure 3) is solved. This is a 
benchmark task, which is rather difficult for a classical MLP. These experiments 
show that the response of the reguralized kernel CMAC is smoother than the 
response of the classical binary CMAC. 



    
(a) (b) 

Figure 1 
The response of the kernel CMAC with weight-smoothing regularization using noiseless (a), and noisy 

(b) training data. C =8, λ=103 
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Figure 2 
The response of the kernel CMAC without (a), and with weight-smoothing regularization. C =32, 

λ=103. 

 

 

 

 

 

 

 

 

 
 

 
Figure 3 

The solution of the two-spiral classification problem using kernel CMAC. C=4 
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Because of the finite support kernel functions local approximation and relatively 
low computational complexity are the additional advantages of kernel CMAC. 
Using this solution the large generalization error can be reduced significantly, so 
the regularized kernel CMAC is a real alternative of the popular neural network 
architectures like MLP and RBF even for multivariate cases. 

Conclusions 

In this paper it was shown that a CMAC network can be interpreted as a kernel 
machine with B-spline kernel function. This kernel interpretation makes it 
possible to increase the number of binary basis functions – the number of 
overlays, as in kernel interpretation the network complexity is upper bounded by 
the number of training samples, even if the number of binary basis functions of the 
original network is extremely large. The consequence of the increased number of 
basis function is that this version will have better modelling capability, and 
applying a special weight smoothing regularization the generalization capability 
can also be improved. Kernel CMAC can be applied successfully for both 
regression and classification problems even when high dimensional input vectors 
are used. The possibility of adaptive training ensures that the main advantages of 
the classical CMAC (adaptive operation, fast training, simple digital hardware 
implementation) can be maintained, although the multiplierless structure is lost. 
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