
Kernel CMAC: an Efficient Neural Network for
Classification and Regression

Gábor Horváth
Department of Measurement and Information Systems
Budapest University of Technology and Economics
Magyar tudósok körútja 2, H-1521 Budapest, Hungary
e-mail: horvath@mit.bme.hu

Abstract: Kernel methods in learning machines have been developed in the last decade as
new techniques for solving classification and regression tasks. Kernel methods have many
advantages properties regarding their learning and generalization capabilities, but for
getting the solution usually the computationally complex quadratic programming is
required. To reduce computational complexity a lot of different versions have been
developed. These different versions apply different kernel functions, utilize the training data
in different ways or apply different criterion functions. This paper deals with a special
kernel network, which is based on the CMAC neural network. Cerebellar Model
Articulation Controller (CMAC) has some attractive features: fast learning capability and
the possibility of efficient digital hardware implementation. Besides these attractive
features the modelling and generalization capabilities of a CMAC are rather limited. The
paper shows that kernel CMAC – an extended version of the classical CMAC network
implemented in a kernel form – combines the advantages of both approaches. Its modelling
and generalization capabilities are improved while the limited computational complexity is
maintained. The paper shows the architecture of this network and presents the relation
between the classical CMAC and the kernel networks. The operation of the proposed
architecture is illustrated using some common benchmark problems.

Keywords: kernel networks, input-output system modelling, neural networks, CMAC,
generalization error

1 Introduction

Kernel machines like Support Vector Machines (SVMs) [1], Least Squares SVMs
(LS-SVMs) [2] and the method of ridge regression [3] have beed developed in the
last decade and proved to be efficient new approaches for solving the learning
problem from samples. Kernel machines can be applied for linear and nonlinear
classification and function approximation, so they can be used for solving
problems that can be solved successfully with classical neural networks too. The

main feature of kernel methods is that they apply a trick, which is called kernel
trick. They use a set of nonlinear transformations from the input space to a
"feature space". However, it is not necessary to find the solution in the feature
space, instead it can be obtained in the kernel space, which is defined easily.
Althogh the kernel space can be defined through the feature space, usually it is
defined directly without fixing the nonlinear transformations of the feature space.
This is a significant advantage, as using the kernel trick the complexity of the
solution is greatly reduced: while the dimension of the feature space can be very
large, even infinite, the dimension of the kernel space is upper bounded by the
number of training samples.

Cerebellar Model Articulation Controller (CMAC) [4] – a special feed-forward
neural architecture, which belongs to the family of feed-forward networks with a
single linear trainable layer – has some attractive features. The most important
ones are its extremely fast learning capability and the special architecture that lets
effective digital hardware implementation possible [5]. The CMAC architecture
was proposed by Albus in the middle of the seventies [4] and it is considered as a
real alternative to MLP and other feed-forward neural networks [6]. Although the
properties of CMAC were analysed mainly in the nineties (see eg. [7]-[9]), some
interesting features were only recognised in the recent years. These results show
that the attractive properties of the CMAC have a price: its modelling capability is
inferior to that of an MLP. This is especially true for multivariate cases, as
multivariate CMACs can learn to reproduce the training points exactly only if the
training data come from a function belonging to the additive function set [7].

The modelling capability can be improved if the complexity of the network is
increased. This more complex network was proposed in [8], but as the complexity
of the CMAC depends on the dimension of the input data, in multivariate cases the
high complexity can be an obstacle of implementation in any way. A further
deficiency of CMAC is that its generalization capability is also inferior to that of
an MLP even for univariate cases. The real reason of this property was shortly
presented in [10] and a modified training algorithm was proposed for improving
the generalization capability. This training algorithm is derived using a regularized
loss function, where the regularization term has some weight-smoothing effect.

This paper presents a different interpretation of the CMAC networks and details
why this interpretation can help to improve the quality of the network without
increasing the complexity even in multidimensional cases. The paper shows that
this new interpretation corresponds to a kernel machine with second order B-
spline kernel functions. The kernel interpretation may suffer from the same poor
generalization capability, however the weight-smoothing regularization can be
applied for the kernel CMAC too. This means that using kernel CMAC both the
modelling and the generalization capabilities can be improved significantly.
Moreover it can be shown that similarly to the original CMAC the kernel versions
can also be trained iteratively, which may be important in such applications where
real-time on-line adaptation is required.

2 Kernel Machines

The goal of a kernel machine is to approximate a (nonlinear) function ()ufyd =

using a training data set { }P
kd kyk 1)(),(=u . A kernel machine can be used for

solving classification or regression problems. For classification the function to be
approximated is { },1: ±→ℜNf while for regression problems a continuous

function ℜ→ℜNf : should be approximated. In the kernel machines first the
u input vectors are projected into a higher dimensional feature space, using a set
of nonlinear functions () MN ℜ→ℜ:uϕ , then the output is obtained as a linear
combination of the projected vectors:

() () () bbwy T
j

M

j
j +=+= ∑

=
uwuu ϕϕ

1
 (1)

where w is the weight vector and b is a bias term. The dimensionality (M) of the
feature space is not defined directly, it follows from the method (it can even be
infinite). The kernel trick makes it possible to obtain the solution not in the feature
space but in the kernel space

() ()∑
=

+=
P

k
k bkKy

1
)(,uuu α (2)

where the kernel function is formed as

() () ())()()(),(jkjkK T uuuu ϕϕ= (3)

In (2) the kα coefficients serve as the weight values in the kernel space. The
number of these coefficients equals to or less (in some cases it may be much less)
then the number of training points [1]. The main advantage of a kernel machine is
that the kernel function can be defined directly without using the feature space
representation. For this purpose the kernel function should fulfill some conditions
[11]. Kernel machines can be constructed using constrained optimization, where
first a criterion function and some constrainst are defined and where the solution is
obtained using Lagrange a multiplicator approach.

Kernel machines have many different versions. The different versions apply
different kernel functions or formulate the constrained optimization problem in
different ways. Most often Gaussian kernels are used, but polynomial, spline, etc.
kernels can also be applied [11]. The complexity of the solution depends on the
form of the constraints. Using inequality constraints [1] quadratic programming is
required to reach the solution. This approach was introduced by Vapnik and it
results in the classical support vector machine (SVM) solution. A less complex
solution is obtained if instead of the inequality constraints equality ones are
applied. One approach of this version is when quadratic criterion function and

equality constraints are used. It is called least squares support vector machine (LS-
SVM) [2]. Ridge regression is similar to LS-SVM, although its derivation is
slightly different from that of the LS-SVM [3]. In LS-SVM instead of quadratic
programming the solution can be obtained using simple matrix inversion. To show
the detailes of the kernel machines is beyond the scope of this paper. These
detailes can be found in the recently published excellent books [11], [12] and
papers.

3 A Short Overview of the CMAC

CMAC is an associative memory type neural network, which performs two
subsequent mappings. The first one - which is a non-linear mapping - projects an
input space point Nℜ∈u into an association vector a. The second mapping
calculates the output ℜ∈y of the network as a scalar product of the association
vector a and the weight vector w:

y(u)=a(u) Tw (4)

The association vectors are sparse binary vectors, which have only C active
elements, C bits of the association vector are ones and the others are zeros. As the
association vectors are binary ones, scalar products can be implemented without
any multiplication; the scalar product is nothing more than the sum of the weights
selected by the active bits of the association vector.

∑
=

=
1)(:

)(
u

u
iai

iwy (5)

CMAC uses quantized inputs, so the number of the possible different input data is
finite. There is a one-to-one mapping between the discrete input data and the
association vectors, i.e. each possible input point has a unique association vector
representation.

Another interpretation can also be given to the CMAC. In this interpretation for an
N-variate CMAC every bit in the association vector corresponds to a binary basis
function with a compact N-dimensional hypercube support. The size of the
hypercube is C quantization intervals. This means that a bit will be active if and
only if the input value is within the support of the corresponding basis function.
This support is often called receptive field of the basis function [4].

The mapping from the input space into the association vector should have the
following characteristics: (i) it should map two neighbouring input points into
such association vectors that only a few elements - i.e. few bits - are different, (ii)
as the distance between two input points grows, the number of the common active
bits in the corresponding association vectors decreases. For input points far

enough from each other - further then the neighbourhood determined by the
parameter C – the association vectors should not have any common bits.

This mapping is responsible for the non-linear property and the generalization of
the whole system. The first layer implements a special encoding of the quantized
input data. This layer is fixed. The trainable elements, the weight values that can
be updated using the simple LMS rule, are in the second layer. The way of
encoding, the positions of the basis functions in the first layer, determines the
generalization property of the network. In one-dimensional cases every
quantization interval will determine a basis function, so the number of basis
functions is approximately equal to the number of possible discrete inputs.
However, if we follow this rule in multivariate cases, the number of basis
functions will grow exponentially with the number of input variables, so the
network may become too complex. As every selected basis function will be
multiplied by a weight value, the size of the weight memory is equal to the total
number of basis functions, to the length of the association vector. If there are ri
discrete values for the i-th input dimension an N-dimensional CMAC needs

)1(Π
1

−+=
=

CrM i
N

i
 weight values. In multivariate cases the weight memory can be

so huge that practically it cannot be implemented.

To avoid this high complexity the number of basis functions must be reduced. In a
classical multivariate CMAC this reduction is achieved by using basis functions
positioned only at the diagonals of the quantized input space. The positions of the
overlays and the basis functions of one overlay can be represented by definite
points. In the original Albus scheme the overlay-representing points are in the
main diagonal of the input space, while the basis-function-positions are
represented by the sub-diagonal points. In the original Albus architecture the
number of overlays does not depend on the dimension of the input vectors; it is
always C. This means that in multivariate cases the number of basis function will
not grow exponentially with the input dimension, it will be “only”

)1(1
1

1 ⎥
⎥

⎤
⎢
⎢

⎡
−+= ∏

=
−

N

i
iN Cr

C
M . This is an advantageous property from the point of

view of implementation, however this reduced number of basis functions is the
real reason of the inferior modelling capability of the multivariable CMACs, as
reducing the number of basis functions the number of free parameters will also be
reduced. Here modelling capability refers to the ability that a network can learn to
reproduce exactly the training data: a network with this ability will have no
modelling error.

The consequence of the reduced number of basis functions is that an arbitrary
classical binary multivariate CMAC can reproduce exactly the training points only
if they are obtained from an additive function [7]. For more general cases there
will be modelling error i.e. error at the training points. It should be mentioned that
in multivariate cases even this reduced weight memory may be too large, so

further complexity reduction may be required. This reduction is achieved by
applying a new compressing layer [4], which uses hash-coding. Although hash-
coding solves the complexity problem, it can result in collisions of the mapped
weight and some unfavourable effects on the convergence of CMAC learning
[13], [14]. As it will be seen later the proposed new interpretation solve the
complexity problem without the application of hashing, so we will not deal with
this effect.

Another way of avoiding the complexity problem is to decompose a multivariate
problem into many one-dimensional ones, so instead of implementing a
multidimensional CMAC it is better to implement many simple one-dimensional
networks. The resulted hierarchical, tree-structured network - called MS_CMAC
[15] - can be trained using time inversion technique [16]. MS_CMAC greatly
reduces the complexity of the network, however there are some restrictions in its
application as it can be applied only if the training points are positioned at regular
grid-points. A further drawback is that most of the simple networks need training
even in the recall phase increasing the recall time significantly.

A CMAC – as it has a linear output layer – can be trained by the LMS algorithm:

() () () ()kekkwkw ii aμ+=+1 , (6)

where)()()()()(kkykykyke T
dd aw−=−= is the error at the k-th training step.

Here)(kyd is the desired output for the k-th training point, y(k) is the network
output for the same input, a(k) = a(u(k)) and μ is the learning rate. Training will
minimize the quadratic error

∑
=

=
P

k
keJ

1

2)(
2
1min

w
 (7)

where P is the number of training points.

The solution of the training can also be written in a closed form

dyAw †=∗ (8)

where () 1† −
= TT AAAA is the pseudo inverse of the association matrix formed

from the association vectors a(i) = a(u(i)), and])(...)2()1([Pyyy ddd
T

d =y is
the output vector formed from the desired values of all training data. The response
of the trained network for a given input u can be determined using the solution
weight vector:

d
TTTTy yAAAuawuau 1*)()()()(−== . (9)

4 Kernel CMAC

4.1 The Derivation of the Kernel CMAC

The relation between CMAC and kernel machines can be shown if we recognize
that the association vector of a CMAC corresponds to the feature space
representation of the kernel machines. This means that the non-linear functions
that map the input data points into the feature space, are the rectangular basis
functions. The binary basis functions can be regarded as first-order B-spline
functions of fixed positions.

To get the kernel representation of the CMAC we should apply (3) for the binary
basis function. In univariate cases second-order B-spline kernels can be obtained
where the centre parameters are the input training points. In multivariate cases the
kernels will be different because of the reduced number of basis functions.
However, we can apply the full-overlay CMAC, (although the dimension of the
feature space would be unacceptable large). Because of the kernel trick the
dimension of the kernel space will not increase: the number of kernel functions is
upper bounded by the number of training points. Thus we can build a kernel
version of a multivariate CMAC without reducing the length of the associate
vector. This implies that this kernel CMAC can learn any training data set without
error independently of the number of input variables. The multivariable kernel
functions can be obtained as tensor products of univariate second order B-spline
functions. This interpretation can be applied for higher-order CMACs too [8] with
higher order basis functions (k-th order B-splines with support of C). In these
cases CMACs correspond to kernel machines with properly chosen higher–order
(2k-th order) B-spline kernels.

Kernel machines can be derived through constrained optimisation. The different
versions of kernel machines apply different loss functions. Vapnik’s SVM for
regression applies ε-insensitive loss function [1], while LS-SVM can be obtained
if quadratic loss function is used [2]. The classical CMAC uses quadratic loss
function too, so we obtain an equivalent kernel representation if in the constrained
optimisation also quadratic loss function is used. This means that the kernel
CMAC is similar to an LS-SVM.

The response of a trained network for a given input can be obtained by (9). To see
that this form can be interpreted as a kernel solution let construct an LS-SVM
network with similar feature space representation. For LS-SVM regression we
seek for the solution of the following constrained optimisation.

() ()∑
=

+=
P

k

T keJ
1

2

22
1,min γwwew

w
 (10)

such that)()()(kekky T
d += aw . Here there is no bias term, as in the classical

CMAC bias term is not used. The problem in this form can be solved by
constructing the Lagrangian

()∑
=

−+−=
P

k
d

T
k kykekJL

1
)()()(),(),,(awewew αα (11)

where kα are the Lagrange multipliers. The conditions for optimality can be given
by

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

==−+→=
∂

∂

==→=
∂

∂

=→=
∂

∂
∑
=

PkkykekL

Pkke
ke

L

kL

d
T

k

k

P

k
k

,...,1 0)()())((0),,(

,...,1)(0
)(

),,(

)(),,(
1

uawew

ew

aw0
w
ew

α
α

γαα

αα

 (12)

Using the results of (12) in (11) the Lagrange multipliers can be obtained as a
solution of the following linear system

dyαIK =⎥
⎦

⎤
⎢
⎣

⎡
+
γ
1 (13)

Here TAAK = is the kernel matrix and I is a P×P identity matrix. The response of
the network can be obtained as

d
TTT

d
TT

T
P

i
k

P

k
k

TT kKky

yIAAAuayIKAua

αuKuuauawuau

11
11

1)(1)(

)())(,()()()()(

−−
==

⎥
⎦

⎤
⎢
⎣

⎡
+=⎥

⎦

⎤
⎢
⎣

⎡
+=

==== ∑∑

γγ

αα

 (14)

The obtained kernel machine is an LS-SVM or more exactly a ridge regression
solution [3], because of the lack of the bias term. Comparing (9) and (14), it can
be seen that the only difference between the classical CMAC and the ridge
regression solution is the term (1/γ)I, which comes from the modified loss
function of (10). However, if the matrix AAT is singular or it is near to singular
that may cause numerical stability problems in the inverse calculation, a
regularization term must be used: instead of computing 1)(−TAA the regularized

inverse 1)(−+ IAA ηT is computed, where η is the regularization coefficient. In this
case the two forms are equivalent.

4.2 Kernel CMAC with Weight-Smoothing

This kernel representation improves the modelling property of the CMAC. As it
corresponds to a full-overlay CMAC it can learn all training data exactly.
However, the generalization capability is not improved. In the derivation of the
kernel machines regularization and the Lagrange multiplier approach are applied.
To get a CMAC with better generalization capability a further regularization term
can be applied. Smoothing regularization can be obtained if a new term is added to
the loss function of (10). The modified optimization problem can be formulated as
follows:

() ∑∑∑
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++=

P

k i
k

dP

k
k

T iw
C
y

eJ k

1

2

1

2)(
222

1,min λγwwew
w

 (15)

)(iwk is a weight value selected by the ith active bit of ak, so i runs through the
indexes where ak(i)=1. As the equality constraint is the same as in (10), we obtain
the Lagrangian

()∑∑∑∑
===

−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++=

P

k
dkk

T
k

P

k i
k

dP

k
k

T
k

k yeiw
C
y

eL
11

2

1

2)(
222

1),,(awwwew αλγα (16)

The Lagrange multipliers can be obtained again as a solution of a linear system.

dC
yKIIKα DD ⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

−
λ

γ

1
1 (17)

where () TADIAK D
1−+= λ and ∑

=

=
P

k
kdiag

1
)(aD .

The response of the network becomes

() ⎥⎦
⎤

⎢⎣
⎡ ++= −

d
TT

C
y yαADIuau λλ 1)()(. (18)

5 Illustrative Experimental Results

The different kernel versions of the CMAC network were validated by extensive
experiments. Here only the results for the simple classification and regression
benchmark problems are presented. The function approximation capability of the
kernel CMAC is illustrated using the 1D (Figure 1) and 2D (Figure 2) sinc
functions. For classification the two spiral problem (Figure 3) is solved. This is a
benchmark task, which is rather difficult for a classical MLP. These experiments
show that the response of the reguralized kernel CMAC is smoother than the
response of the classical binary CMAC.

(a) (b)

Figure 1
The response of the kernel CMAC with weight-smoothing regularization using noiseless (a), and noisy

(b) training data. C =8, λ=103

0
5

10
15

20
25

30
35

40
45

50

0
5

10
15

20
25

30
35

40
45

50
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

CMAC network output over test mesh C=4 d=3 mse=0.001341

0
5

10
15

20
25

30
35

40
45

50

0
5

10
15

20
25

30
35

40
45

50
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Regularized kernel-CMAC output over test mesh C=4 d=3 mse=2.3777e-005

(a) (b)

Figure 2
The response of the kernel CMAC without (a), and with weight-smoothing regularization. C =32,

λ=103.

Figure 3

The solution of the two-spiral classification problem using kernel CMAC. C=4

-10 0 10 20 30 40 50 60 70
-10

0

10

20

30

40

50

60

70

Because of the finite support kernel functions local approximation and relatively
low computational complexity are the additional advantages of kernel CMAC.
Using this solution the large generalization error can be reduced significantly, so
the regularized kernel CMAC is a real alternative of the popular neural network
architectures like MLP and RBF even for multivariate cases.

Conclusions

In this paper it was shown that a CMAC network can be interpreted as a kernel
machine with B-spline kernel function. This kernel interpretation makes it
possible to increase the number of binary basis functions – the number of
overlays, as in kernel interpretation the network complexity is upper bounded by
the number of training samples, even if the number of binary basis functions of the
original network is extremely large. The consequence of the increased number of
basis function is that this version will have better modelling capability, and
applying a special weight smoothing regularization the generalization capability
can also be improved. Kernel CMAC can be applied successfully for both
regression and classification problems even when high dimensional input vectors
are used. The possibility of adaptive training ensures that the main advantages of
the classical CMAC (adaptive operation, fast training, simple digital hardware
implementation) can be maintained, although the multiplierless structure is lost.

References

[1] V. Vapnik: "Statistical Learning Theory", Wiley, New York, 1995

[2] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, B. and J.
Vandewalle: "Least Squares Support Vector Machines", World Scientific,
Singapore, 2002

[3] C. Saunders, A. Gammerman and V. Vovk: "Ridge Regression Learning
Algorithm in Dual Variables. Machine Learning", Proc. of the Fifteenth
Int. Conf. on Machine Learning, pp. 515-521, 1998

[4] J. S. Albus, "A New Approach to Manipulator Control: The Cerebellar
Model Articulation Controller (CMAC)", Transaction of the ASME, pp.
220-227, Sep. 1975

[5] J. S. Ker, Y. H. Kuo, R. C. Wen and B. D. Liu: “Hardware Implementation
of CMAC Neural Network with Reduced Storage Requirement”, IEEE
Trans. on Neural Networks, Vol. 8, pp. 1545-1556, 1997

[6] T. W. Miller III., F. H. Glanz and L. G. Kraft: "CMAC: An Associative
Neural Network Alternative to Backpropagation" Proceedings of the IEEE,
Vol. 78, pp. 1561-1567, 1990

[7] M. Brown, C. J. Harris and P. C. Parks, “The Interpolation Capabilities of
the Binary Cmac”, Neural Networks, Vol. 6, No. 3, pp. 429-440, 1993

[8] S. H. Lane, D. A. Handelman and J. J. Gelfand: "Theory and Development
of Higher-Order CMAC Neural Networks", IEEE Control Systems, Vol.
Apr. pp. 23-30, 1992

[9] C. T. Chiang and C. S. Lin: ‘‘Learning Convergence of CMAC
Technique’’ IEEE Trans. on Neural Networks, Vol. 8. No. 6, pp. 1281-
1292, 1996

[10] T. Szabó and G. Horváth: "Improving the Generalization Capability of the
Binary CMAC” Proc. Int. Joint Conf. on Neural Networks, IJCNN’2000.
Como, Italy, Vol. 3, pp. 85-90, 2000

[11] B. Schölkopf and A. Smola: “Learning with Kernels. Support Vector
Machines, Regularization, Optimization and Beyond” The MIT Press,
Cambridge, MA, 2002

[12] B. Schölkopf, C. J. C Burges and A. J. Smola: “Advances in Kernel
Methods. Support Vector Learning” The MIT Press, Cambridge, MA, 1999

[13] L. Zhong, Z. Zhongming and Z. Chongguang: “The Unfavorable Effects of
Hash Coding on CMAC Convergence and Compensatory Measure” IEEE
International Conference on Intelligent Processing Systems, Beijing,
China, pp. 419-422, 1997

[14] Z.-Q. Wang, J. L. Schiano and M. Ginsberg: “Hash Coding in CMAC
Neural Networks” Proc. of the IEEE International Conference on Neural
Networks, Washington, USA, Vol. 3, pp. 1698-1703, 1996

[15] J. C. Jan and S. L. Hung: High-Order MS_CMAC Neural Network, IEEE
Trans. on Neural Networks, Vol. 12, No. 3, 2001, pp. 598-603

[16] J. S. Albus: "Data Storage in the Cerebellar Model Articulation
Controller", J. Dyn Systems, Measurement Contr. Vol. 97, No. 3, pp. 228-
233, 1975

