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Abstract: A system identification problem can be formulated as an optimization task where 
the objective is to find a model and a set of parameters that minimize the prediction error 
between the plant outputs i.e., the measured data, and the model output. The most existing 
system identification approaches are highly analytical and based on mathematical 
derivation of the system’s model. As an alternative to these methods, evolutionary 
computation seems to be a very promising approach, because it needs only few knowledge 
about the problem and id can be easily combined with a number of other techniques from 
control engineering, machine learning, artificial intelligence and so on. This paper 
considers an evolutionary approach for system identification and attempts to show how 
GAs can be applied in system identification tasks. Some study cases confirm that good 
performance can be achieved by this method. 
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1 Introduction 

System identification consists of two tasks. The first task is structural 
identification of the equations and the second one is an estimation of the model’s 
parameters. In control engineering, system identification is used to find a model of 
the plant to control. In this context, system models describe the behavior of the 
plant over time. 

In the case the structure of the model is known in advance, the needed knowledge 
relies to the numerical values of a number of parameters. 

In the following paragraphs, the experimental estimation of parameters will be 
referred. These methods use the measurements carried out on input and output 
signals, having the goal to find the mathematical models, which better describe, 
very close to reality, the behavior of the plant. 



In order to apply GAs in systems identification, each individual in the population 
must represent a model of the plant and the objective becomes a quality measure 
of the model, by evaluating its capacity of predicting the evolution of the 
measured outputs. The measured output predictions, inherent to each individual i, 
is compared with the measurements made on the real plant. The obtained error is a 
function of the individual’s quality. As less is this error, as more performing the 
individual is.There are many ways in which the GAs can be used to solve system 
identification tasks. The main tendencies are described in [1], [2], [3], [5], [7], [8]. 

2 Experimental Methods for Parameters Estimation 

The phases to be passed for experimental parameters estimation are presented in 
Figure 1 [4]. 

The described method uses as starting point an approximate plant model. The 
model’s outputs are compared with the experimental results and an error criteria 
related to the plant outputs and the mathematical model outputs is used. The 
mathematical model’s those parameters are determined which lead to an output 
that fits the best to the plant outputs carried out by experimental measurements. 
These stages are then continued until the error criterion is met. [4] 
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Figure 1 

The experimental parameters estimation phases 



The identification can be carried out on-line or off-line. In the on-line case, the 
input and output signals used are those, which appear in the usual operation of the 
plant and the model of the system is obtained in real time. In the off-line case, also 
the signals that appear in the usual operation of the plant are employed, but these 
signals are previously collected, by employing laboratory measurements. [4]. 

In the case the plant structure is not known in advance, the following phases are to 
be performed: 

- Experimentally investigate if the plant has constant or adjustable parameters; 

- Experimentally identify the linear domain of the plant; 

- Adopt a mathematical describing principle. 

Related to the input u(t) in Figure 1, the following assignation is necessary: this 
signal must have a suitable structure in order to punctuate in the reaction of the 
system all its characteristics. Consequently, it can be or a simple signal – as step 
or ramp – or a complex signal established from successive typical signals. Also, in 
order to obtain accurate resuts, an apropriate data management is necessary, as 
presented in [7]. 

Regarding the measured plant output, related to the type of the model to find – 
discrete time or continuous time – the samples must be oriented in the ascending 
order of time, they must correspond to the same equidistant moments in the case 
of discrete time systems and arbitrary in case of continuous time systems. 

If the error criterion is of integral type, the practical usage consists in replacing the 
integral by an equivalent sum. 

For simplicity and considerates of good approximation, the time moments when 
the comparison is carried out are considered equidistant, disregarding if the 
models are of discrete or continuous type. 

3 Applying GAs in Systems Identification 

This paragraph presents a method intended to the estimation of the plant 
parameters by using GAs. The method uses the principle scheme depicted in 
Figure 2. 

In Figure 2, the bloc named Plant has the unknown parameters, which are to be 
found in the genetic search. The bloc Model has adjustable parameters, which are 
transmitted from GAs in the evaluation step. By comparing the y(t) and ymi(t) 
outputs, a measure of the performance Ji is obtained, on base of which the 
individual i has assigned the Fitnessi function. 
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Figure 2 

The principle scheme for parameters estimation 

3.1 Implementing the Proposed Method by Simulation 

The evaluation step for the proposed method is performed by simulation. For this 
purpose, the bloc diagram depicted in Figure 2 is implemented in a Simulink 
model. By performing a simulation for the individual i, the plant output y(t) and 
the model output ymi(t) are obtained. 

GAs use individuals encoded as real numbers vector, that are the parameters 
searched in the estimation process. The individual encoding, in the case of 
estimating a number of n parameters is showed in Figure 3. 

Figure 4 represents the output of a given plant to a step input signal. Such a curve 
is compared with the output of the model having adjustable parameters, at 
equidistant dt time moments, belonging to the interval [0, tmax], where tmax is the 
maximum simulation time. 

If the model’s parameters are identical to the plant parameters, that is, if they are 
correctly estimated, the response curve ymi(t) of the model completely overlaps the 
plant output curve y(t). 
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Figure 3 

An individual encoding 
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The output of a given plant to a step input signal 

Contrary, the two response curves differ and the estimation error for the individual 
i can be defined by relation (1). 
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Adding the both members of the relation (1) for all the time moments and 
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The sum given by relation (2) is considered to be built up with such a small step, 
as it can be approximated with an integral. 

The geometrical interpretation of the relation (2) is presented in Figure 5, where 
the plant output is presented relative to the model’s output. 

Denoting with Sy and Symi the domains delimited by y(t) curve, respectively ymi(t) 
and the time axis, showed hachured in the figure, due to the non-overlapping of 
the curves, between them a series of “non-overlapping” surfaces are delimited, 
which are those hachured in the same direction in the Figure 5. 

These surfaces can be considered as performance criteria for the estimation 
quality: as smaller they are, as better the parameters estimation is. Their sum is 
obtained with relation (2). 

In the problems of parameters estimation, it is not sufficient to use the system’s 
response relative to a unique input signal. In order to obtain estimation as good as 



possible, a number Ne of test vectors are to be used, corresponding to a number Ne 
of input-output experiments [6], [7], [8]. 
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Figure 5 

The plant output relative to the model’s output 

A test vector associates a plant input signal to an output signal, having the form 
(uj, yj), where uj, is a given input signal and yj is the corresponding output signal, 
where  j = 1 ... Ne. 

By this way, to the input of both plant and model, successively are applied de 
input signals uj and the outputs yj and ymij are compared. This comparison supposes 
that a simulation having the inputs uj is performed and the value Jij is computed 
with relation (2) on base of the obtained output, for each individual i. 

The performance indicator becomes the sum of the computed values of Jij for each 
simulation. As smaller this sum is, as better the parameters estimation is. The 
evaluation step becomes more complex, as showed in Figure 6. This step is 
repeated for each individual i, in each generation of the algorithm. 

In mathematical form, the performance criteria is given by relation (3): 
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It has to be noted that, in the expression (3) the performance criteria uses equal 
weights for all of the input signals only in the cases these signals have a 
comparable amplitude. In the case the input signals amplitude are very different, 
weighting coefficients can be used in order to compensate these amplitude 
differences, as presented in relation (4). 
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where the coefficients kj are choosed by using apriori knowledges, based in the 
previous analyse of the measurements performed on the real plant (for example 
contrariwise with the signal amplitude). 
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Evaluation step for an individual 

The Fitness function is defined by relation (5). 
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where the maximum value of Fitnessi is 1, this situation corresponding to the 
complete achievement of performance requirements. 

This method was described with the goal of testing it by simulation, supposing the 
system’s structure is known in advance, but the parameters are unknown, the goal 
of appling GAs being exactly the estimation of these parameters. 



3.2 Implementing the Proposed Method in the Real Plants 

In real situations, the evaluation step is also implemented by simulation, unlike the 
parameters estimation is carried out off-line, by using previously performed 
measurements on the real plant. 

In this case, the following elements are supposed to be known: 

- the plant structure, for example having the form of a transfer function with 
unknown parameters; 

- a number Ne of sample vectors, as pears of input signals u(t) and output 
signals y(t) obtained by measurements; 

- the maximum recording time tmax of the signals collected from the real plant. 

By using this input data, the evaluation of an individual is carried out in a number 
of Ne phases, using a Simulink model for simulation. 

The used Simulink model corresponds to the principle scheme in Figure 2, in 
which the Model block has the transfer function with the same form as the Plant 
block, but the Model block has adjustable parameters collected from the GAs and 
the Plant block is replaced by the measurements performed on the real Plant. 

3.3 Possbilities to Extend the Proposed Method to Systems 
Having Unknown Structure 

Although in the previous paragraph GAs were used only to estimate the 
parameters of systems having a known structure, this approach can be extended to 
identify some systems having an unknown structure. 

The procedure described in 3.2 can be applied to systems having the transfer 
function given by relation (6). 
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This transfer function has a minimum order for the part without delay time. The 
coefficients Kp, Tp are τ the unknown parameters, which are to be estimated. 

If by applying GAs in these conditions the obtained results are not satisfying, the 
rational part of the transfer function is completed with additional zeros and/or 
poles, until satisfying results are obtained [4]. 

By this way, the transfer function has the form given by relation (7), where the 
values of m and k are gradually enlarged in each step, and the procedure described 
in the paragraph 3.2. is applied. 
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In this situation, GAs will use a population having a high number of individuals 
and they will evolve for a great number of generations. Additionally, GAs need to 
apply some techniques intended to maintain the population diversity. 

In the real situations, the computing process can be simplified, since the 
coefficients Kp and τ can be find experimentally without difficulties [4], such as 
these coefficients can become constants having known values, or parameters 
defined in a small interval, which takes in consideration the experimental 
identification errors, as in relation (8). 
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where Kp exp and τexp represents the experimentally determined coefficients, and 
the constants p1 and p2 are established depending on the accuracy of the 
experimental measurements performed. 

3.4 Case Study 

The following problem of parameters estimation is considered: 

- The system has the transfer function with the form of the relation (6); 

- The unknown coefficients Kp, Tp and τ have values in the domain [0.1 …20]. 

As input signals uj a number of k = 10 sample signals are used, exprimed by 

relation (9), where the coefficients jkjkjka ϕω ,, are randomly chosen. 
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The problem is implemented by simulation, accordingly to paragraph 2. In the 
Simulink scheme, a plant having the transfer function (10) is used. 

se
s

HP
10

15
5,1 −
+

=
 (10) 

GAs have to identify the coefficients in the relation (10) in such a way that, at the 
end of the algorithm we expect to obtain the solutions: 



Kp = 1,5,  Tp = 5,   τ =  10. 

The block diagram of the Simulink model is given in Figure 7. 

GAs have the following parameters: 
- Population size N = 50; 
- Tournament selection with the tour size T=5; 
- Arithmetic crossover; 
- Uniform mutation; 
- Crossover probability 0,6; 
- Mutation probability 0,1; 
- Stopping criteria 15 generations. 
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Figure 7 

The block diagram of the Simulink model used in the case study 

By applying GAs in the manner described in paragraph 3.2, the following solution 
was found: 

Kp = 1.4907,  Tp = 4.4977,   τ =  9.7982,   Fitness = 0.96592 

It can be senn that this solution approximates the searched parameters with an 
acuracy of 96%. 

The genetic evolution is presented in Figure 8, where the the average Fitness is 
denoted M and the standard deviation with S. In this figure it can be seen that the 
average Fitness keeped its ascending charasteristic until the last generation. It can 
conclude that it is possible to obtain better solutions by increasing the number of 
the generations. For this reason, another run of GAs was performed, this time with 
50 generations. 

By applying GAs the following solution was found: 



Kp = 1,4999 
  Tp = 4,9916 
  τ =  10,0049 
  Fitness = 0,9995 

It can be seen that this solution approximates the searched parameters with an 
acuracy of 99,9%. 
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Figure 8 

The GAs evolution in 15 generations 

The genetic process is depicted in Figure 9. By analyzing this figure, it can 
conclude that the GAs parameters were well selected, since in the final 
generations a local search was performed, that lead to obtain an estimation with a 
higher acuracy. 
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Figure 9 

The GAs evolution in 50 generations 



Conclusions 

This paper presented a system identification method based on an evolutionary 
strategy. The genetic algorithm approach has shown to be versatile when applied 
to parameters estimation without requiring a detailed mathematical representation 
of the problem. The presented method is flexible and applicable in a wide range of 
problems. The obtained results show that GAs can estimate the parameters values 
with a high accuracy. 

This work can be continued with other studies and experiments regarding the input 
data management or  approaching other techniques, such as genetic programming, 
neural networks, fuzzy logic and combinations of the last ones and GAs [9], [10]. 
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