
Universal Communication Component on
Symbian Series60 Platform

Róbert Kereskényi, Bertalan Forstner, Hassan Charaf
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
Robert.Kereskenyi@aut.bme.hu, Bertalan.Forstner@aut.bme.hu,
hassan@aut.bme.hu

Abstract: In the recent years a new category of handheld devices appeared. The so-called
smartphone is a combination of the regular cell phones and PDAs. It is a fully functional
hand sized compute that supports phone calls. As these devices became popular, more and
more application was developed to the different smartphone platforms. These softwares
benefit from the different communication technologies in order to be able to use them with
other mobile or desktop applications.
There are different mobile platforms, and Symbian is the most promising among them. The
number of applications available by downloading or by purchasing for Symbian OS is
increasing every day.
The communication API of this platform was built on the Active Object design pattern to
handle the asynchronous communication operations. We can reach each type of
communication protocol through this API, but they differ from each other, and therefore
they can be hard to implement, mainly when we want to do it in one application.
Therefore we designed and implemented an universal communication component on
Symbian Series60 platform, that can be used as a linked library. It supports all available
communication type through a common interface, hides the differences of the protocols
from the developers, and easily configurable for each communication type.

Keywords: Design patterns, network communication, mobile devices, mobile development,
Symbian

1 Introduction

In the last few years we can observe a rapid and continuous evolution of mobile
communication systems. While the devices become smaller and smarter, their role
in our life has been totally reinterpreted. At the beginning the phones were used
only for voice calls, nowadays, however, they are much like universal
communication tools.

mailto:Robert.Kereskenyi@aut.bme.hu
mailto:Bertalan.Forstner@aut.bme.hu
mailto:hassan@aut.bme.hu

Different devices with different platforms exist from several vendors. Almost all
of these platforms are open to installing and running applications developed by
independent software vendors. Therefore, voice transmission has become a
secondary function, and other information management software has turned into
the essential part of the platform.

Since mobile software development does not have a long history, the development
culture has only a substandard, and is still evolving. The developers often need to
solve recurring problems, invent the solution again and again in each application,
which is very time consuming. In addition, it is often hard to reuse existing
algorithms, interfaces or implementations due to the heterogeneous hardware and
software architecture, or the different operating systems. The developers can not
focus on the real problem; they need to deal with the subsidiary tasks. That makes
development ineffective and error prone. Without a standard structure, the source
code is hard to read. It is especially true when talking about mobile
communication systems.

Design patterns [1] are the basis for the widespread reuse of software architectures
and design solutions. There are several patterns in desktop environment we can
use for typical problems that arise in implementing communicating applications.
They could be used as a starting point for software design in mobile environment.
However, the limited resources of the mobile devices need to be taken into
account.

2 Related Work

Recall that in the last few years a new generation of mobile devices appeared.
These devices were a combination of the existing cell phone and the personal
digital assistants (PDAs). The smartphone – a fully functional computer in a cell
phone shape and size – means new opportunities and also problems for developers
that need to be solved. Both of them derive from the special properties and design
of the device: smart and small.

The usability of the device based on its operating system, which is becoming
smarter day by day. It can be considered an advantage or disadvantage, but there
are different mobile operating systems [2]. They can not be regarded as
downscaled desktop operating systems (OS), nor as embedded systems with
communication capabilities. They are new types of operating systems developed
to satisfy the special needs of mobile devices. The most frequent platforms are
Symbian OS, Windows Mobile, and Mobile Linux. Similarly to the case of
desktop environments, the applications are not easily portable between different
operating systems.

The devices are designed to communicate with other desktop or mobile computers
or servers. Therefore they are capable of long and short distance communications
on wired and wireless barriers. Since the devices are mobile, in most cases the
wireless communication techniques should be used. The applicable technologies
are, for example, 3G UMTS, GPRS, IrDA or Bluetooth. Although they are totally
different transport techniques, at the application layer they all can be handled with
sockets. After initializing the current communication technology, there is a socket
on the server and client side that is needed to be connected. There are different
discovery services depending on the technology currently used to select the
remote device before establishing the connection. On each side of the
communication, there is a socket to read and write.

Communication is an asynchronous operation: when the data is ready to send, it is
written to the socket, and when the data arrives, it must be read from the socket
[3]. Therefore, it fits only into an event driven application structure.

We only focus on the part of an application that is responsible for communication.
In most cases there is no activity, only waiting for data to send or receive. When
the data arrives, the main application should be notified such that it can process
the read data, and reader process listens again to the socket for receiving data. The
main application process must be prevented to run into a waiting block. In desktop
environments, there is another thread that can be blocked, which notifies the main
application via a callback function when the data is read from the socket and can
be processed.

We searched for a similar solution in mobile environment, taking care of the fact
that much less resource is available, and starting a new thread is “expensive”. The
solutions can be best described with the following design patterns.

2.1 The Reactor Design Pattern

The Reactor architectural design pattern enables event-driven applications to
demultiplex and dispatch request delivered to an application from one or more
clients. [4][5]

The communication software must respond to each event generated by multiple
sources. These events are from multiple I/O that are the different resources
managed by the operating system. The events can occur from multiple devices
simultaneously. Therefore a single-threaded application must not block on reading
from a specified I/O channel, because events from other channels could not be
handled. Multi-threaded application can be a potential solution for the problem: a
separate thread should handle each connection. Each thread can be blocked in a
READ call, since it does not have any affect on other peers, only the one it is
associated. When an event arrives, the thread unblocks, event is handled, and the

thread reblocks again. It could be a solution, but using multi-threading for event
handling in communication applications has many disadvantages:

• Threading may cause complex concurrency control.

• Threading may decrease the performance due to data movement,
synchronization, context switching.

• Threading is not available on all operating systems.

The Reactor pattern manages a single-threaded event loop that performs event
demultiplexing and event handler dispatching in response to events from multiple
sources.

The Reactor pattern can be used in the following cases,

• Multiple events may occur simultaneously from multiple resources, and
blocking or continuous polling on an individual resource listening to an
event is inefficient.

• Each event handler processes its messages in a short period of time.

• Using multi-threading for event handling in communication is impossible
because of the absence of multi-threading support of the operating system.

• Using multi-threading for event handling in communication is inappropriate
due to the poor performance or very high complexity it causes.

The collaboration in the described pattern is performed as follows:

• An application registers its own concrete event handler with the reactor.

• After all event handles are registered, the application starts the event loop of
the reactor, called handle_events(). It then calls the synchronous event
demultiplexer to wait for indication events to occur.

• The synchronous event demultiplexer function returns to the reactor when
one handle corresponding to event sources becomes ‘ready’.

• The reactor dispatches the corresponding hook method of the appropriate
event handler.

The advantages of using the Reactor pattern are the following:

• It improves the modularity and reusability of event-driven application
software by separating the application-independent mechanisms from
application-specific part.

• It improves application portability by reusing its interface independently
from the operating system calls that perform event demultiplexing.

However, it also has some disadvantages:

• Event handlers are not preempted during execution. Therefore it should not
block on an I/O, and should cause short-duration operations.

• Applications using Reactor pattern can be hard to debug because of their
flow control.

2.2 The Active Object Design Pattern

The Active Object design pattern decouples the method execution from method
invocation to enhance concurrency and simplify synchronized access to objects
that reside in their own threads of control [4][6][7].

The context of usage is that clients access objects running in separate threads of
control.

Many program benefit from using concurrent objects to improve their quality of
service, for example by allowing an application to handle multiple client requests
simultaneously. Instead of using single-threaded passive objects, which executes
its methods in the thread of control of the client that invoked the methods, a
concurrent object resides in its own thread of control. If objects run concurrently,
access to their method and data must be synchronized if these objects are shared
and modified by multiple client thread. In the presence of this problem the
following forces arise:

• Methods invoked on an object concurrently should not block the entire
process so that to prevent degrading the quality of service of other methods.

• Synchronized access to shared object should be as simple as possible.

• Applications should be designed to transparently leverage the parallelism
available on a hardware and software platform.

A solution can be that each object that requires concurrent execution decouples
method invocation on the object from method execution. Method invocation
should occur in the client’s thread of control, whereas method execution should
occur in a separate thread. This decoupling should be designed such that the client
thread appears to invoke an ordinary method.

There is an object (proxy) that acts as a well defined interface for an active object,
and another object (servant) exists that implements this interface. These objects
run in separate threads, thus, method invocation and method execution can run
concurrently.

At run-time the proxy transforms the client method invocations of the client into
method requests stored in an activation list by the scheduler. The event loop of the
scheduler runs continuously in the same thread as the servant, dequeueing method
request from activation list and dispatching them on the servant.

The benefits of the Active Object design pattern are the followings:

• It enhances application concurrency and simplifies the synchronization
complexity.

• Transparently leverages available parallelism.

• Method execution order can differ from method invocation order.

The Active Object pattern has a few disadvantages:

• Performance overhead.

• Complicated debugging.

3 Series60 Universal Communication Component

As an example on the basics of an active object, a communication component can
be developed and reused in many of further applications that incorporate
communication. Using an existing solution during software development makes
our life easier, therefore such an universal communication component is definitely
efficient. We realized the solution on Symbian Series60 platform [8], but an idea
can be applicable also on other platforms.

On the Symbian platform there are two different communication subsystems:
serial and socket based. Both uses abstract classes over the bottom layers, which
can be configured with strings or other protocol identifiers. Thus, the
communication subsystem employs the currently selected protocol. Its most
important advantage is that all the communication protocols are accessible on a
common layer with different configurations. The supported technologies are IrDA,
Bluetooth, and TCP/IP.

With the native support of the framework realizing all technologies in our
application is still a challenge. Therefore we thought that such a universal
communication component handles all technologies, provides the same interface
for all protocols. Furthermore, all initialization phase has a default setting (that can
be modified manually) that can be used in further application development. We
only have to specify which technology we want to use, then connect to the remote
device, perform, the data transfer, and finally disconnect. It is much easier to reuse
than implement it every time.

The component must be able to handle point-to-.point communication with each
type of protocols mentioned above, transfer data confidentially (error checking
and repairing, keeping packet order), disconnect and release the resources.
Furthermore, it must be easy-to-use in such cases, when we want to integrate the
communication component in an existing application. In these cases it can easily

happen that the structure of the existing application does not fit into the
asynchronous, event-driven model. Then we would like handle communication
“synchronously”.

In most cases, there is no activity in the communication; it is in a waiting state. As
a client, our application is waiting for the response from the server. When our
application acts as a server, it always has to listen for incoming client request. Our
application seems to be only waiting for sending or receiving data. Therefore a
suitable programming model had to be established, called asynchronous, event
driven development.

The Symbian platform offers a special solution: it uses active object to avoid a
continuous waiting state. An active object is a thread running parallel with the
main application and generating communication requests and handling events that
arrive as response for the requests. Only the platform can notify the active object
about incoming outer events, but any object has access to the active object can
cancel the request. The active object must implement a predefined interface,
namely a method, which will be invoked by the OS (more precisely, by the
scheduler) when a response arrives to any active request.

On the Symbian platform, an active object must be derived from the CActive
class, and must implement the methods called RunL() and DoCancel(). The
scheduler will call the method RunL(), when a response arrives for any request of
the active object. It is important that only the OS (the scheduler) can call this
method. The method DoCancel() is called directly by the public Cancel() method
of the active object. It cancels all active request of the object.

A class hierarchy of the component can be seen in Figure 1. As a core, an active
object must exist in the system, and it is inherited in the engine, in the reader, and
in the writer objects. The active object either a part of the SDK of the platform, or
can be implemented by the description. The Symbian platform has an
implemented Active Object called CActive.

Figure 1

Structure of the communication component

The functions of the three classes mentioned above are the following:

• CSocketsEngine:

o Creates socket on the server side and listens to incoming client calls.

o Creates socket on the client side and connects to a server.

o Handles all notifications from the reader and writer objects.

• CSocketsReader:

o Reads continuously and asynchronously from the connected socket.

o Notifies the engine object of the socket about incoming data.

• CSocketsWriter:

o Writes data to the connected socket asynchronously.

Among all activities in the communication, connecting and reading from the
socket are the two that mostly demonstrate the state waiting. A server must
continuously listen for incoming client connections, and a client must

continuously listen for incoming data to read. Therefore, the sequence diagrams of
these activities are illustrated how they really work.

At first, we should take a closer look on at connection. When the server is started,
it is in disconnected state. It makes initial configuration steps to select the
communication technology should be used (IrDA, Bluetooth, TCP), specifies the
port for the incoming connections, and finally opens a socket. Then it sets the
active object active (says the OS then the object has a request) which notifies the
engine about the incoming client connection.

Consider the scenario when a client tries to connect to a specified server on the
specified port. Since this activity is asynchronous the platform (scheduler) will
notify our active object, the communications engine by calling the method
specified in the interface (in this case RunL()). When the connection process is
closed successfully, the server and the client turn to connected state, and start a
new continuous reading process.

A sequence diagram of the reading mechanism (normal, asynchronously) is
illustrated in Figure 2. When the client and the server make a transition to the
connected phase, they start a continuous reading. The reader object is realized as
an active object. It sends out the read request, and “blocks” on the current socket
waiting for incoming data. When data arrives, the platform notifies the reader
object about it by calling the in the interface defined RunL() method. Then the
reader object calls back the communication engine object on a predefined
interface function ResponseReceived(). In this function, the engine notifies its
owner class realizes the business logic of the application.

Figure 2

Reading from the socket

The sequence diagram of the other reading mode, the “synchronous” one is
illustrated in Figure 3. By the point that data arrives on the socket it has the same
functionality like the asynchronous one. When data arrives, the platform notifies
the reader object about it by calling the in the interface defined RunL() method.
Then the reader object calls back the communication engine object invoking a
predefined interface function ResponseReceived(). In this function, the engine
does not notify its owner class, only tries to store the arrived data. Therefore it has
a FIFO queue of messages. The newly received data will be attached on the end of
the list. Of course it is not an endless queue; therefore, it has a maximum length
defined in the component. When it reaches this length, the engine object notifies
its owner class about that error. When the main application reaches a point when it
needs a received data, it calls the Read() method of the engine directly. The return
value is either the oldest stored data if any, or NULL, representing that the
message queue is empty. If there was a message in the queue, it will be given back
to the owner object as a return value, and will be deleted from the front of the list.

Figure 3

Reading from socket (synchronous)

Conclusion

In software development, it happens very often that the different applications have
similar or same parts, like communication. When a developer needs to implement

the solution for the same sub-problem in every project, it will degrade the efficient
of the whole development process, while:

• It takes a lot of time to create a real good communication engine.

• When there are no best practices for the recurring problems, very complex
solutions can be realized depending on the experience of the developer.

• A complex solution could mean potential and typical errors, it is hard to
debug, and could result an ineffective performance.

Therefore, it is necessary to have best practices and ready solutions for typical
problems than can be easily reused or adopted on the target platform. It is also
important that we spare time and resource, which can be invested to focus on the
real problem of the specific application. When a concrete implementation is not
ready for use, then design patterns can help us to design the right architecture and
solutions for the application. They support solution for frequent problems in
application development, like communication. With or without an example
implementation, they are very useful and worth being followed, because time has
proven their efficiency.

The need for such a communication library described above was verified by
personal experience. Since Symbian Series60 platform has a wide range of APIs
for using different device functionality, a multi-protocol communication is hard to
implement, especially in each application. All of the mentioned communication
technologies have a framework API to be used, but they differ from each other.
The differences come up only in connection establishment, the rest of the
communication are the same in each technique. In the initialization phase,
depending on the used protocol we have to turn on the corresponding hardware
component, set up a listening socket with appropriate properties, set up security
(optional by TCP/IP and IrDA, but we must configure it for Bluetooth
connection), do device discovery and finally connect to the remote server. During
the configuration there are a lot of properties must be set up (especially by
Bluetooth), which can have dedicated default values used by each connection. In
most cases the developers do not want to customize all of these settings, they just
want to use them in minimal line of source code. Therefore our library provides
default values for these settings. Of course, when needed, their value can be set
manually; the library has the support for that. We only have to define which
communication method we want to use, and then connect to a remote device,
transfer data, and finally disconnect.

We have found the implemented communication component very useful in
software development on Symbian Series60 platform. With the help of this library
we can easily use any kind of supported communication technology in our
application with only a minimal number of new lines in our source code. Although
the communication is an asynchronous operation, we can handle it as a
synchronous one. With this new model it can fit easily the structure of our existing

applications. By using this component, we can save the time of designing,
implementing and testing the communication subsystem, where testing could be
very hard, especially in mobile environment. Future work includes models based-
support for the created communication library.

Acknowledgements

The fund of "Mobile Innovation Centre" has supported in part, the activities
described in this paper.

References:

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software (Addison-Wesley, 1994)

[2] Schmidt D. C., and Stephenson, P.: Experiences using design patterns to
evolve system software across diverse OS platforms. In Proceedings of the
Ninth European Conference on Object-Oriented Programming (Aarhus,
Denmark), August 1995

[3] D. C. Schmidt: Using Design Patterns to Develop Reusable Object-
Oriented Communication Software, COMMUNICATIONS OF THE ACM
Vol. 38, No. 10, 1995, 65-74

[4] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann: Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects, Volume 2
(John Wiley & Sons, 2000)

[5] D. C. Schmidt: “Reactor: An Object Behavioral Pattern for Concurrent
Event Demultiplexing and Event Handler Dispatching,” in Pattern
Languages of Program Design (Addison-Wesley, 1995)

[6] J. Vlissides, J. Coplien, N. Kerth: Pattern Languages of Program Design 2
(Addison-Wesley, 1996)

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal:
Pattern-Oriented Software Architecture - A System of Patterns (Wiley and
Sons, 1996)

[8] Michael J. Jipping: Symbian OS Communications Programming (John
Wiley & Sons, 2002)

	1 Introduction
	2 Related Work
	2.1 The Reactor Design Pattern
	2.2 The Active Object Design Pattern
	3 Series60 Universal Communication Component

