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Abstract: The paper proposes a new canonical form for RT-level descriptions, which can be 
systematically generated from both the specification and the structural description. The 
verification can be executed with the comparison of the two generated canonical form 
descriptions. 

1 Introduction 

When it comes to the designing of digital systems, a description in accordance 
with a well-chosen canonical form provides grounds for the efficient methods of 
the formal verification and the symbolic simulation, alike. The logic (gate-level) 
synthesis, along with the verification and the symbolic simulation are all based on 
the canonical forms, which borrows its tools from the classic switching algebra. In 
the aspect of their application on computer design systems, particularly successful 
was Roth’s cube algebra, which is based on a new wording of Boole’s canonical 
forms [1]. 

The descriptions of the register transfer level have up to the present lacked the 
universality and heuristic power, which characterises the switching algebra. Thus, 
the canonical forms employed on the register level could only be applied to a 
restricted scale of tasks. To this category belongs, for instance, the Taylor-
polynomial method, which is capable of verifying the register-level structures of 
arithmetic expressions, but has its limits within this very class [2], [3]. 

The implementation of the register transfer level canonical description suggested 
by the author of the present paper is conditional on the same requirements as those 
forming the principle of the most part of designing methods. The data-path 
structure is controlled by a synchronous finite state machine (FSM), as a controller 
built around a core. The structure must clearly reflect that in a specific state of the 
FSM, as an interval: 

1 Which sub-paths of the data-path are switched active by the multiplexers, 



and 

2 Into which registers and on what conditions occurs entering of data. 

On condition that the structure's description meets the requirements above, the 
canonical form, as suggested by this paper, can be prepared. 

At the same time, an identical canonical description is gained from the algorithm-
level specification, which is a behavioural description, formulated in one of the 
high level programming languages. If the canonical description, gained from the 
structure, and the behavioural description are provably homomorphous, – even at 
the expense of certain permissible transformations – the verification process can 
be considered successful. 

2 Decomposition of Sequential Behavioral 
Descriptions 

We decompose the program, constituted by sequential statements, into a 
hierarchical structure of modules, between the statements modifying the control, 
as bordering points. In the sequential subset of VHDL-processes the control 
branch statements are the following: 

begin . . . . . . . . . . . end 

wait   until . . . . 

for   . .  loop. . . . .end loop 

while . . .loop . . . end loop 

if . . . then . . .else . . . end if 

The example below is the abstract style behavioural description of a hardware unit 
in charge of carrying out the algorithm of square root calculation. Figure 1 shows 
the way we decompose the description into modules, and the way these modules 
and their attachments constitute the state-graph of an abstract state machine. It is 
important to formulate the variable-assignment statements of the description 
through functions that are implemented by the components (function-units) of the 
hardware structure. 

 



library work; use 
work.sqrtpack.all; 

entity SQRT_UNIT is 

  port ( START : in bit; 

         READY : inout bit := '1'; 

         RESET : in bit; 

         pe : in real := 0.0; 

         px : in real:= 0.0; 

         py : inout real := 0.0; 

         ph1, ph2 : in bit); 

end SQRT_UNIT; 

architecture BEH of SQRT_UNIT 
is 

 begin 

 process 

   variable e, x, y, cy, ny, v : real := 
0.0; 

   variable d : real := 1.0; 

   variable f : bit := '1'; 

   variable g : bit; 

  begin 

   wait until START = '1';   

   READY <= '0'; 

   wait for 1 ns; 

   e := pe; x := px; 

   cy := Fi(x); 

   wait for 1 ns; 

    

      

 

 

 

 

while f = '1' loop   

      v := MD(div, x, cy);   

      v := AS(add, cy, v); 

      ny := MD(mult, 0.5, v) ;   

      d := AS(sub,ny,cy); 

      g := Cm(d, 0.0); 

      if g = '0' then  

         d := AS(sub, 0.0, d); 

      end if; 

      cy := ny; 

      f := Cm(d, e);  

    end loop; 

   wait for 1 ns; 

     

    py <= cy; 

    READY <= '1'; 

end process; 

end BEH; 



 
Figure 1 

The decomposition of the square root algorithm into sequential modules 

3 Generating Value-Target Event-Driven Data-Flow 
Blocks from Behavioural Description 

Consider the variable-assignment statements of a sequential module and the values 
ordered to the variables v1, v2, . . . vj . . . .vn by the sequence. Pick out the value of 
vj next in line, resulting from the next-in-line variable assignment. Formulate this 
in the following substitution expression: 

vj(p+1)  = E[ . . .vk / vk(p) . . . ]. 

The value next in line of variable vj can be calculated through the substitution of 
the present values of the variables of the right hand side into the variable-
assignment statement. If we number the values of the variables of the sequence, 
from v1(0), v2(0), . . . vj(0), . . .vn(0) up to those terminal values of maximum indexes 
v1(t), v2(t),  . . . vj(t),  . . .vn(t), ordering one target to each and every value of each 
and every variable, and on the other hand, we order to each variable-assignment 
an event-driven concurrent statement 

wj(p+1)  <= E [ . . .vk /wk(p) . . . ], 



then from these statements we attain an event-driven dataflow-block, which can be 
ordered to the sub-sequence. This block is termed the value-target block (VTB) of 
the sequential module. 

The VTB at rest is 

wj (t)  = E [ . . .vk / wk(t) . . . ]. 

It is conceivable that if the initial value of the variable vj is equal to the initial 
value of the target wj, ordered to it, then the value of vj, with which it leaves the 
sequence module, is also equal to the terminal value of the target of the maximal 
index. One sequence is therefore value-equivalent to the value-tracking block 
gained from it. See a simple example: 

SEQ1: begin 

             for i in 1 to 4 loop 

               a := a + 1; 

           end loop; 

end; 

VTB1 : block 

     begin 

        a1 <= a0 + 1; 

        a2 <= a1 + 1; 

        a3 <= a2 + 1; 

        a4 <= a3 + 1; 

end block; 

A more complex one: 

SEQ2 : begin 

              if e < 0 then a := b * c; 

                                   d := a + b; 

              elsif  e = 0 then 

                                    a := b; 

              else 

                                   d := a; 

              end if; 

   end; 

VTB2 :  block  begin 

                          a1 <= b0 * c0  when 
                                         e0 < 0  else 

                          b0 when e0 = 0   else 

                                     a0; 

                          d1 <= a1 + b0 when 
                                          e0 < 0 else 

                          d0  when  e0 = 0  else 

                                    a0; 

                  end block; 

Now complement the abstract state-transition graph, attained from the square root 
algorithm, with the VTBs of the particular modules. Hence will be obtained the 
description in accordance with Figure 2. Hereafter, this is regarded as the 
canonical form of the specification. 



 
Figure 2 

The canonical form of the square root calculation's specification 

4 Characteristics of the Proposed Canonical Form 
Description 

Two sequential descriptions can be fully equivalent in spite of the number of 
variables or the order of statements within them being different. The canonical 
form described above shows some very important features. These are the 
following: 

1 Unaffected by the number of the variables of the specification's equivalent 
forms. 

2 Unaffected by the order of statements in the modules' equivalent forms. 

3 Unaffected by the number of FSM states deriving from hardware 
limitations. 

4 Unaffected by the allocations of function-unit, register and multiplexer, 
which derive from hardware limitations. 

The first characteristic derives from the fact that the description orders the target-
signals to the values of the variables, which means that the canonical forms of two 
equivalent sequential modules are identical, irrespective of the difference between 
the number of their respective variables. The second feature derives from the fact 



that we convert the modules into data-flow blocks composed of concurrent 
statements, and thus the canonical forms of equivalent sequential modules 
applying different orders of statements are also identical. The third characteristic 
derives from the fact that the states, whose number has been increased because of 
the necessity generated by the hardware limitations, can be contracted during the 
transformations of the canonical form that describes the structure. The fact that 
units lose their identities during the transformations of the structure-describing 
canonical form, and appear in the changed canonical description only through 
their functions (similarly to the way they do in the canonical description of the 
specification) accounts for the fourth characteristic. 

5 Process of Verification of a RT-Level Unit 

The RT-level structure to be verified is shown in Figure 3. The description has to 
contain the structure of DATA-PATH (left side of the figure), and the state-
transition graph of the FSM (right side of the figure). The fuction units of the 
DATA-PATH: 

- One multiplier/divider unit (M/D) 

- Two adder/subtractor units (A/S) 

- Two comparators (Cm) 

- A special look-up table unit for deriving of initial approximation of square-
root. (Fi) 

Above these components the DATA-PATH contains 6 registers and 7 
multiplexers. The Figure 4 shows the result of the initial step of transformations. 
The transactions are ordered in time intervals represented by the states of the 
FSM, and the clock phases (ph2) inside the states. There are state-independent 
transactions in the structure, and they are isolated in the left side of the list. 



 
Figure 3 

The RT-level structure of the square-root calculation to be verified 



 
Figure 4 

Initial canonical form of  the structure of the square-root calculation unit 

6 Transformation Steps of the Verification Process 

1 Simplification within a state: 

sk :  wi  <= wj ;  wj <= driver1    wi <= driver1; 

sk:   wi <<= wj;  wj <= driver1   wi <<= driver1; 

2 Placement of a state-independent transaction into states, if the target of 
the transaction has to be storaged only in one state (si). 

wi <= driver1  si:  wj <<= wi   wi <= driver1    si: wj <<= driver1 

3 Placement of a state-independent transaction into states, if the target of 
the transaction has to be storaged in more than one state. 

wi <= driver1  si: wj <<= wi   sj: wj <<= wi 



  wi <= driver1    si: wj_si <<= driver1  sj : wj_sj <<= driver1 

4 Distinguishing transactions, which have the same target in different 
states 

si : wk <= driver1   sj : wk <= driver2;    si :  wk_si <= driver1  sj: 
wk_sj <=driver2 

 
Figure 5 

Transformation of the description deriving from Figure 4, based on the following transformation rules: 

sk:  wi<=wj; wj <=driver1  sk: wi <=driver1; 

sk: wi <<= wj ; wj <= driver1  sk: wi<=driver1; 



 
Figure 6 

Transformation of the description deriving from Figure 5, based on the rule 

wi <=driver1; si: wj<<= wi  si: wj <<= driver1 



 
Figure 7 

The transformation of the description in accordance with Figure 6, based on the recognition that states 
2 and 3 are contractible. It is to conceive that if the objects of the description are corresponded with 

those of the specification, as seen on the left-hand side of the figure, then a canonical description 
identical to the canonical form of the specification is obtained. 

Conclusions 

The new canonical form detailed above seems to be capable of developing an 
algorithm and an automatic verification system. The work intended to elaborate an 
implementation of the algorithm has been started. 
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