
A Canonical Form of RT-Level FSM Controlled
Data Path Descriptions for Formal Verification

Péter Keresztes
Széchenyi István University, Egyetem tér 1, H-9026 Győr, Hungary
keresztp@sze.hu

Abstract: The paper proposes a new canonical form for RT-level descriptions, which can be
systematically generated from both the specification and the structural description. The
verification can be executed with the comparison of the two generated canonical form
descriptions.

1 Introduction

When it comes to the designing of digital systems, a description in accordance
with a well-chosen canonical form provides grounds for the efficient methods of
the formal verification and the symbolic simulation, alike. The logic (gate-level)
synthesis, along with the verification and the symbolic simulation are all based on
the canonical forms, which borrows its tools from the classic switching algebra. In
the aspect of their application on computer design systems, particularly successful
was Roth’s cube algebra, which is based on a new wording of Boole’s canonical
forms [1].

The descriptions of the register transfer level have up to the present lacked the
universality and heuristic power, which characterises the switching algebra. Thus,
the canonical forms employed on the register level could only be applied to a
restricted scale of tasks. To this category belongs, for instance, the Taylor-
polynomial method, which is capable of verifying the register-level structures of
arithmetic expressions, but has its limits within this very class [2], [3].

The implementation of the register transfer level canonical description suggested
by the author of the present paper is conditional on the same requirements as those
forming the principle of the most part of designing methods. The data-path
structure is controlled by a synchronous finite state machine (FSM), as a controller
built around a core. The structure must clearly reflect that in a specific state of the
FSM, as an interval:

1 Which sub-paths of the data-path are switched active by the multiplexers,

and

2 Into which registers and on what conditions occurs entering of data.

On condition that the structure's description meets the requirements above, the
canonical form, as suggested by this paper, can be prepared.

At the same time, an identical canonical description is gained from the algorithm-
level specification, which is a behavioural description, formulated in one of the
high level programming languages. If the canonical description, gained from the
structure, and the behavioural description are provably homomorphous, – even at
the expense of certain permissible transformations – the verification process can
be considered successful.

2 Decomposition of Sequential Behavioral
Descriptions

We decompose the program, constituted by sequential statements, into a
hierarchical structure of modules, between the statements modifying the control,
as bordering points. In the sequential subset of VHDL-processes the control
branch statements are the following:

begin end

wait until

for . . loop.end loop

while . . .loop . . . end loop

if . . . then . . .else . . . end if

The example below is the abstract style behavioural description of a hardware unit
in charge of carrying out the algorithm of square root calculation. Figure 1 shows
the way we decompose the description into modules, and the way these modules
and their attachments constitute the state-graph of an abstract state machine. It is
important to formulate the variable-assignment statements of the description
through functions that are implemented by the components (function-units) of the
hardware structure.

library work; use
work.sqrtpack.all;

entity SQRT_UNIT is

 port (START : in bit;

 READY : inout bit := '1';

 RESET : in bit;

 pe : in real := 0.0;

 px : in real:= 0.0;

 py : inout real := 0.0;

 ph1, ph2 : in bit);

end SQRT_UNIT;

architecture BEH of SQRT_UNIT
is

 begin

 process

 variable e, x, y, cy, ny, v : real :=
0.0;

 variable d : real := 1.0;

 variable f : bit := '1';

 variable g : bit;

 begin

 wait until START = '1';

 READY <= '0';

 wait for 1 ns;

 e := pe; x := px;

 cy := Fi(x);

 wait for 1 ns;

while f = '1' loop

 v := MD(div, x, cy);

 v := AS(add, cy, v);

 ny := MD(mult, 0.5, v) ;

 d := AS(sub,ny,cy);

 g := Cm(d, 0.0);

 if g = '0' then

 d := AS(sub, 0.0, d);

 end if;

 cy := ny;

 f := Cm(d, e);

 end loop;

 wait for 1 ns;

 py <= cy;

 READY <= '1';

end process;

end BEH;

Figure 1

The decomposition of the square root algorithm into sequential modules

3 Generating Value-Target Event-Driven Data-Flow
Blocks from Behavioural Description

Consider the variable-assignment statements of a sequential module and the values
ordered to the variables v1, v2, . . . vjvn by the sequence. Pick out the value of
vj next in line, resulting from the next-in-line variable assignment. Formulate this
in the following substitution expression:

vj(p+1) = E[. . .vk / vk(p) . . .].

The value next in line of variable vj can be calculated through the substitution of
the present values of the variables of the right hand side into the variable-
assignment statement. If we number the values of the variables of the sequence,
from v1(0), v2(0), . . . vj(0), . . .vn(0) up to those terminal values of maximum indexes
v1(t), v2(t), . . . vj(t), . . .vn(t), ordering one target to each and every value of each
and every variable, and on the other hand, we order to each variable-assignment
an event-driven concurrent statement

wj(p+1) <= E [. . .vk /wk(p) . . .],

then from these statements we attain an event-driven dataflow-block, which can be
ordered to the sub-sequence. This block is termed the value-target block (VTB) of
the sequential module.

The VTB at rest is

wj (t) = E [. . .vk / wk(t) . . .].

It is conceivable that if the initial value of the variable vj is equal to the initial
value of the target wj, ordered to it, then the value of vj, with which it leaves the
sequence module, is also equal to the terminal value of the target of the maximal
index. One sequence is therefore value-equivalent to the value-tracking block
gained from it. See a simple example:

SEQ1: begin

 for i in 1 to 4 loop

 a := a + 1;

 end loop;

end;

VTB1 : block

 begin

 a1 <= a0 + 1;

 a2 <= a1 + 1;

 a3 <= a2 + 1;

 a4 <= a3 + 1;

end block;

A more complex one:

SEQ2 : begin

 if e < 0 then a := b * c;

 d := a + b;

 elsif e = 0 then

 a := b;

 else

 d := a;

 end if;

 end;

VTB2 : block begin

 a1 <= b0 * c0 when
 e0 < 0 else

 b0 when e0 = 0 else

 a0;

 d1 <= a1 + b0 when
 e0 < 0 else

 d0 when e0 = 0 else

 a0;

 end block;

Now complement the abstract state-transition graph, attained from the square root
algorithm, with the VTBs of the particular modules. Hence will be obtained the
description in accordance with Figure 2. Hereafter, this is regarded as the
canonical form of the specification.

Figure 2

The canonical form of the square root calculation's specification

4 Characteristics of the Proposed Canonical Form
Description

Two sequential descriptions can be fully equivalent in spite of the number of
variables or the order of statements within them being different. The canonical
form described above shows some very important features. These are the
following:

1 Unaffected by the number of the variables of the specification's equivalent
forms.

2 Unaffected by the order of statements in the modules' equivalent forms.

3 Unaffected by the number of FSM states deriving from hardware
limitations.

4 Unaffected by the allocations of function-unit, register and multiplexer,
which derive from hardware limitations.

The first characteristic derives from the fact that the description orders the target-
signals to the values of the variables, which means that the canonical forms of two
equivalent sequential modules are identical, irrespective of the difference between
the number of their respective variables. The second feature derives from the fact

that we convert the modules into data-flow blocks composed of concurrent
statements, and thus the canonical forms of equivalent sequential modules
applying different orders of statements are also identical. The third characteristic
derives from the fact that the states, whose number has been increased because of
the necessity generated by the hardware limitations, can be contracted during the
transformations of the canonical form that describes the structure. The fact that
units lose their identities during the transformations of the structure-describing
canonical form, and appear in the changed canonical description only through
their functions (similarly to the way they do in the canonical description of the
specification) accounts for the fourth characteristic.

5 Process of Verification of a RT-Level Unit

The RT-level structure to be verified is shown in Figure 3. The description has to
contain the structure of DATA-PATH (left side of the figure), and the state-
transition graph of the FSM (right side of the figure). The fuction units of the
DATA-PATH:

- One multiplier/divider unit (M/D)

- Two adder/subtractor units (A/S)

- Two comparators (Cm)

- A special look-up table unit for deriving of initial approximation of square-
root. (Fi)

Above these components the DATA-PATH contains 6 registers and 7
multiplexers. The Figure 4 shows the result of the initial step of transformations.
The transactions are ordered in time intervals represented by the states of the
FSM, and the clock phases (ph2) inside the states. There are state-independent
transactions in the structure, and they are isolated in the left side of the list.

Figure 3

The RT-level structure of the square-root calculation to be verified

Figure 4

Initial canonical form of the structure of the square-root calculation unit

6 Transformation Steps of the Verification Process

1 Simplification within a state:

sk : wi <= wj ; wj <= driver1 wi <= driver1;

sk: wi <<= wj; wj <= driver1 wi <<= driver1;

2 Placement of a state-independent transaction into states, if the target of
the transaction has to be storaged only in one state (si).

wi <= driver1 si: wj <<= wi wi <= driver1 si: wj <<= driver1

3 Placement of a state-independent transaction into states, if the target of
the transaction has to be storaged in more than one state.

wi <= driver1 si: wj <<= wi sj: wj <<= wi

 wi <= driver1 si: wj_si <<= driver1 sj : wj_sj <<= driver1

4 Distinguishing transactions, which have the same target in different
states

si : wk <= driver1 sj : wk <= driver2; si : wk_si <= driver1 sj:
wk_sj <=driver2

Figure 5

Transformation of the description deriving from Figure 4, based on the following transformation rules:

sk: wi<=wj; wj <=driver1 sk: wi <=driver1;

sk: wi <<= wj ; wj <= driver1 sk: wi<=driver1;

Figure 6

Transformation of the description deriving from Figure 5, based on the rule

wi <=driver1; si: wj<<= wi si: wj <<= driver1

Figure 7

The transformation of the description in accordance with Figure 6, based on the recognition that states
2 and 3 are contractible. It is to conceive that if the objects of the description are corresponded with

those of the specification, as seen on the left-hand side of the figure, then a canonical description
identical to the canonical form of the specification is obtained.

Conclusions

The new canonical form detailed above seems to be capable of developing an
algorithm and an automatic verification system. The work intended to elaborate an
implementation of the algorithm has been started.

References

[1] M. A. Breuer: Design Automation of Digital Systems, Prentice-Hall Inc,
1972

[2] M. Ciesielsky, P. Kalla, Z. Zeng and B. Rouzeyre: Taylor Expansion
Diagrams: A new Representation for RTL Verification, IEEE Intl. High
Level Design Validation and Test Workshop (HLDVT’01), 2001, pp 70-75

[3] P. Kalla, M. Ciesielsky, E. Boutillon, E. Martin: High Level Design
Verification Using Taylor Expansion Diagrams: First Results, IEEE Intl.
High Level Design Validation and Test Workshop (HLDVT’02), 2002, pp
13-17

