
Set Overlap in Mining of Frequent Itemsets

László Kovács
Department of Information Technology, University of Miskolc
kovacs@iit.uni-miskolc.hu

Abstract: An important module of soft computing methods is the set overlap operation. If a
query set is tested with a large pool of source sets, the signature-based or the inverted-file
methods are used to reduce the cost of operation. The paper introduces a modified version
of the inverted-file approach, which yields in lowest costs for sparse input samples, i.e.
where the number of records containing an element is relatively low.

1 Introduction
One of the main application areas of data mining is the association analysis. In the
frame of association analysis, the association rules existing among the elements of
a data pool should be discovered. This helps the users to learn new structural rules
related to the data set.

A key process step in the analysis is the generation of the frequent itemsets as the
rules are based on examples with high frequency value. The filtering of itemsets
based on frequency is a useful module not only in discovering of association rules.
The elimination of infrequent elements can be used in reduction of the problem
size too. There are several methods to generate the frequent itemsets. The main
methods are the Apriori-based solutions and the closed itemset algorithms.

The paper focuses on the algorithms based on closed itemset. In processing of the
closed itemsets, the new closed itemsets are generated using the intersection
operation. A new transaction itemset should be intersected with every existing
itemsets. The paper addresses the problem of efficient generation of the set of
intersection sets.

2 Mining of Frequent Itemset
To describe the discovery process for frequent itemsets some basic definitions are
introduced:

 U : universe

 u ∈ U : item

 ti ⊆ U : transaction

 H = {ti} : history

 UH = ∪ ti : domain of the history

 a ⊆ UH : itemset

 f(a) = |{ti | a ⊆ ti }| : frequency of the itemset

An association rule is denoted by

 X ⇒ Y

where

 X,Y ⊆ U_{H}

 support(X,Y) = f(X ∪ Y) > ε1

and

 confidence(X,Y) = f(X ∪ Y) / f(X) > ε2

are met. Here ε1 and ε2 are the thereshold values.

One of the prerequisites for an X ⇒ Y association rule is that the frequency of
X ∪ Y should be higher than a given threshold. Thus one the key elements in
discovering association rules is the discovery of the frequent itemsets.

The basic variant of finding the frequent itemsets is the Apriori algorithm [7]. The
algorithm employs an iterative approach to discover the frequent itemsets of
increasing sizes. First, the frequent 1-itemsets are found, then the 2-itemsets and
so on. To reduce the cost, the following property is used: every subsets of a
frequent itemsets are frequent too. This means that a frequent itemset at level k
can not contain an infrequent itemset from level k-1. A detailed description of the
Apriori algorithm can be found for example in [7].

Beside the Apriori algorithm there exist some other approaches too. Our interest is
focused on the algorithm based on closed itemset lattice, as the lattice structure
provides some extra advantages, among others it can be used to discover
semantical or generalization relationship among the frequent itemsets. A good
summary on the theory of closed itemsets can be found among others in [6].

The term of closed itemset is related to the area of concept lattices or Galois
lattices [6] which is used in many application areas to represent conceptual
hierarchies among the objects in the underlying data. The field of Formal Concept
Analysis [8] introduced in the early 80ies has grown to a powerful theory for data
analysis, information retrieval and knowledge discovery. A K context is a triple
K(G,M,I) where G and M are sets and I is a relation between G and M. The G is

called the set of objects and M is the set of attributes. The cross table T of a
context K(G,M,I) is the matrix form description of the relation I:

 ti,j = 1 , if gi
 Iaj

 0 otherwise

where gi ∈G , aj ∈M .

Two Galois connection operators are defined. For every A ⊆ G :

 f(A) = A' = { a ∈M | g I a for ∀ g ∈A }

and for every B ⊆ M

 g(B) = B' = { g ∈G | g I a for ∀ a ∈B } (3)

The Galois closure operator is defined by

 h = f ° g

and

 A'' = h(A)

is the Galois closure of A. The pair C(A,B) is a closed itemset of the K context if

 - A ⊆ G

 - B ⊆ M

 - A' = B

 - B' = A

 - A = h(A)

hold true. In this case A is called the extent and B is the intent of the C closed
itemset. It can be shown that for every Ai ⊆ G ,

 (∪i Ai)' = ∩ i A'i

and similarly for every Bi ⊆ M ,

 (∪i Bi)' = ∩i B'i

holds true.

Considering the Φ set of all concepts for the K context, an ordering relation can be
introduced for the set of closed itemsets in the following way:

 C1 ≤ C2

if

 A1 ⊆ A2

where C1 and C2 are arbitrary closed itemsets. It can be proved that for every (C1,
C2) pair of closed itemsets, the following rules are valid:

 C1 ∨ C2 ∈ Φ

and

 C1 ∧ C2 ∈ Φ

Based on these features (Φ, ∩) is a lattice, called closed itemset lattice. According
to the Basic Theorem of closed itemset lattices, (Φ, ∩) is a complete lattice, i.e.
the infinum and suprenum exist for every set of closed itemsets. The following
rules hold true for every closed itemsets:

 ∨i (Ai, Bi) = (∩i Ai,(∪ iBi)'')

 ∧i (Ai, Bi) = ((∪iAi) '', ∩iBi)

The structure of a Galois lattice is usually represented with a Hasse diagram. The
Hasse diagram is a special directed graph. The nodes of the diagram are the closed
itemsets and the edges correspond to the neighbourhood relationship among the
itemsets. If C1, C2 are itemsets for which

 C1 < C2

! ∃ C3 ∈(Φ, ≤) : C1 < C3 < C2

hold true then there is a directed edge between C1, C2 in the Hasse diagram. In this
case, the C1 and C2 concepts are called neighbour concepts.

According to the Apriori property, there is no need to explicit generate all frequent
itemsets, as every subset of a frequent itemset are frequent. Thus, only those
frequent itemsets are located which have no frequent container itemset. These
frequent itemsets are called maximal frequent itemsets. The relationship between
the frequent itemsets and the maximal frequent closed itemsets is based on the
following properties [6]:

- all sub closed itemsets of a frequent closed itemset is frequent

- all sup closed itemsets of an infrequent closed itemset is infrequent

- the set of maximal frequent itemsets is identical to the set of maximal
frequent closed itemsets

- the support of a frequent not closed itemset is equal to the support of the
smallest frequent closed itemset containing the itemset in question.

In the different lattice building algorithms, the extension of the input database
with one new transaction may yield in extension of the lattice with several new
itemset nodes. At some other nodes, the frequency counter should be incremented
by one. All of the nodes affected during the update operation, are subsets of the

new itemset. Thus, a key step in updating the lattice is to define these subsets as
the intersection with the existing itemsets of the lattice.

The performance bottleneck of frequent itemsets generation lies in the following
problems:

- generating all of the intersections

- elimination of redundant itemsets

- insertion of the new itemset into the lattice

All of these steps have a high computation costs. Although the proposals usually
do not contain cost formulas, the experimental shows [1][2] that the cost functions
may be O(2N), as the number of possible itemsets is an exponential function of the
number of elements.

3 Set Overlap Algorithms
For description of this problem area the following new denotations are introduced:

 si : a set indexed by i

 S = {s} : the set of sets

 D = ∪ si : the domain set of the set elements

 q : a query set

 supe ⊆ S : the set of sets containing the element e ∈D

 N : number of sets in S

 H : number of elements in D

 M : the average size of a set

The task is to determine the intersection sets Iq,S which contains the results of
intersections with every elements of S:

 Iq,S = { q ∩ si | si ∈S }

Taking the basic approach, the sets are processed sequentially and the results are
merged into the result set. The main steps of the algorithm are the followings:

 I = {}

 foreach si ∈S begin

 r = q ∩ si

 I = I ∪ r

 end

The cost of the algorithm can be calculated with

 C1 = O(M (N + R ⋅logR))

where

 R : number of sets in I

The problem of set overlap was mainly investigated in the database
implementation field, related to the problem of efficient joins of set valued
attributes[3]. In the literature, for the set overlap problem two basic approach can
be found. The signature-based indexing[1] and the inverted-file[1] approach.

The signature is a bitmap used to represents sets in the form of a bitmap matrix.
The rows of the matrix corresponds to the elements and the columns is assigned to
the sets. The bi,j bit is set to 1 if the j-th set contains the i-th element. To reduce the
size of the signature matrix, the number of rows is usually significantly reduced.
This means that not every element will have an own row in the matrix. Thus,
several elements may share the same bitmap mask. In this case a hash function is
used to assign the bitmap mask to the elements. Considering the lookup function,
in the case of the reduced matrix, the search process should be performed in two
distinct steps. First, the signature of the query set is generated and the sets
containing this mask are retrieved. This step is called filtering step. In the second
phase, the resulted sets are tested to decide whether the candidate is a valid
overlap or not. The candidates having no overlap with the query set, are called
false drops.

In the case of inverted file approach, a list of container sets is generated for every
element. This list contains the set identifiers of the sets containing the element.
This list is called an inverted list. The size of the inverted-file depends on the
average number of sets containing an element. In the case of a query, the
processing is performed in the following steps. First, the elements of the query set
are parsed. The inverted lists of the elements are retrieved from the inverted file.
This can be done very efficiently as the inverted files are usually indexed by the
element values. In the second step, the yielded inverted lists are processed to
calculate the result set. An important cost parameter of this method is the average
length of the inverted lists denoted by L.

In recent comparison studies [1] the inverted file was proven significantly faster
than signature-based indexes. The main reasons for difference, according to [1],
are the followings:

- The inverted file is more suitable for real-life applications where the sets
are sparse and the domain cardinality is large.

- The signature-based approach generates usually a large number of false
drops.

- The inverted file uses an exact indexing instead of the hashing approach of
the signature file.

Based on these considerations, the inverted file method was selected for
implementation in our system. The methods mentioned in the literature could not
applied directly in our system, as we had different goals and requirements. The
special characteristics of our system can be summarized in the following points:

- the intersections itself are of interest not the transactions having
intersections,

- all of the new possible intersections should be retrieved,

- the intersections already stored in the pool, should be neglected,

- the transactions usually have small number of elements,

- the element domain is very large.

To meet these requirements, a modification was performed on the basic inverted-
file algorithm. To retrieve the requested result set, the following steps should be
done with the inverted lists:

- generating all possible intersection groups, theoretically the number of
these groups is 2M,

- performing the intersections for every groups with a cost value of M*L.

This method yields a total cost of

 C2 = O(M ⋅ L⋅ logH + 2M ⋅ M ⋅ L)

In our approach an extra reduction was invented, to reduce number of performed
intersections. In this approach, a special binary tree is applied to manage the
intersections. Every layer of the tree is assigned to one element from the query
interface. Every nodes symbolize the different partial selection possibilities. The
leaf nodes are the subsets of the query set. Thus the number of the leaves is equal
to

 2M

A node stores the elements meeting the selection criteria. An edge from the parent
node to the child node denotes the addition of the next element to the selection
possibilities. Each edge is assigned to the inverted list of the actual element. The
edge to the right-hand child is assigned to the set in the inverted list (positive
sign), the left-hand child is assigned to the complementary set of the inverted list
(negative sign). The content of the parent node and of the edge determines the
content of the child. The generation rule can be summarized in the following:

- positive parent and positive edge: positive sign and intersection operation

- positive parent and negative edge: positive sign and minus operation

- negative parent and positive edge: positive sign and minus operation

- negative parent and negative edge: negative sign and union operation

The main benefits of this approach is that is can reduce the number of performed
operations and can cut a branch of the tree if one internal node gets empty. This
method yields a total cost of

 C3 = O(M ⋅L ⋅ logH + 2M ⋅ L)

The following table shows some test result on this method.

N C1 C2 C3
20000 3.0 0.012 0.006
40000 6.0 0.027 0.014
80000 11.0 0.067 0.037

160000 20.0 0.19 0.13

Table 1
Comparison of the cost values

The first test results show that the inverted file approach provides a superior
performance regarding the retrieval operation. The proposed modification yields
in further improvement if the elements are relatively rare in the training pool. For
the cases where

 L / N < 0.001

the proposed method gives the best cost value. In our project, the proposed
algorithm will be built into a module for mining frequent itemsets.

References
[1] Mamuloulis N., Efficient Processing of Joinsd on Set-valued Attributes,

Proc. of SIGMOD, 2003, pp.

[2] Jampani R. and Pudi V.: Using prefix trees for efficiently computing set
joins

[3] Ramassamy K. and Patel J. and Naughton J. and Kaushik R., Set
containment joins: The good, the bad and the ugly, Proc. of VLDB, 2000

[4] Saragawi S and Kirpal A, Efficient set joins on similarity predicates, Proc.
of ACM SIGMOD, 2004

[5] Hellerstein J. and Pfeffer A., The RD-tree: An index structure for sets

[6] Pei J. and Han J. and MAo R., CLOSET: An efficient algorithm for mining
frequent closed itemsets, 2001

[7] Agrawal R. and Srikant R., Fast algorithms for mining association rules,
Proc. of VLDB, 1994

[8] Ganter B. and Wille R., Formal concept analysis, Springer Verlag, 1999

