
Aspect-Oriented Techniques in Metamodel-
Based Model Transformation

László Lengyel, Tihamér Levendovszky, Hassan Charaf
Budapest University of Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
lengyel@aut.bme.hu, tihamer@aut.bme.hu, hassan@aut.bme.hu

Abstract: Aspect-Oriented Software Development (AOSD) is an emerging area with the
goal of promoting advanced separation of concerns throughout the software development
lifecycle. AOSD started on programming language level, but it must be applicable on a
higher abstraction level as well. This paper provides an overview of aspect-oriented
software development, discusses the key AOSD concepts, and presents the aspect-oriented
programming and aspect-oriented modeling. Furthermore, introduces an aspect-oriented
constraint management approach applied in a metamodel-based model transformation
system.

Keywords: Aspect-Oriented Software Development, Aspect-Oriented Modeling, Aspect-
Oriented Constraint Management, Metamodel-Based Model Transformation.

1 Introduction

Aspect-oriented (AO) techniques are popular today for addressing crosscutting
concerns in software development. Aspect-oriented software development
(AOSD) methods enable the modularization of crosscutting concerns within
software systems. AOSD techniques and tools, applied at all stages of the software
lifecycle, are changing the way software is developed in various application
domains, ranging from enterprise to embedded systems.

A growing area of research in the field of software development is concentrated
on bringing aspect-oriented techniques into the scope of analysis and design [1]
[2] [3]. The motivation of these efforts is the systematic identification,
modularization, representation, and composition of crosscutting concerns such as
security, mobility, distribution, and resource management. Its most important
potential benefits include improved ability to reason about the problem domain
and the corresponding solution; reduction in software model and application code
size, development costs and maintenance time; improved code reuse; architectural
and design level reuse as well as better modeling methods across the lifecycle.

The remainder of this paper is organized as follows: Section 2 gives an overview
of the aspect-oriented software development, illustrates the principles of the
AOSD, aspect-oriented programming (AOP) and aspect-oriented modeling
(AOM). Section 3 introduces an aspect-oriented constraint management (AOCM)
approach applied in a metamodel-based model transformation system, and finally
concluding remarks are presented.

2 Aspect-Oriented Software Development Overview

Aspect-Oriented Software Development (AOSD) [1] [4] is a technology that
extends the separation of concerns (SoC) in software development. The methods
of AOSD facilitate the modularization of crosscutting concerns within a system.
Aspects may appear in any stage of the software development lifecycle (e.g.
requirements, specification, design, and implementation). Crosscutting concerns
can range from high-level notions of security to low-level notions like caching and
from functional requirements such as business rules to non-functional
requirements like transactions. Researchers in AOSD are driven by the
fundamental goal of better separation of concerns (SoC).

AOSD is an emerging paradigm that provides explicit abstractions for concerns
that tend to crosscut over multiple system components and result in tangling in
individual components. By representing crosscutting concerns or aspects as first-
class abstractions, and by providing new composition techniques for combining
aspects and components, the modularity of the system can be improved leading to
a reduced complexity of the system and easier maintainability.

The aim of this section is to provide a conceptual discussion on the problems that
are tackled by AOSD. The discussed concepts and problems appear to be general
for the complete software development life cycle. We will discuss the following
important issues: the concerns and their separation, the problem of the crosscutting
and tangling concerns, the aspect-oriented decomposition, and aspect weaving.
Furthermore, aspect-oriented programming and aspect-oriented modeling is
presented in more detail.

2.1 General AOSD Concepts

Separation of concerns. To understand the ideas in AOSD, we have first to look
at the separation of concerns principle, which can be actually considered one of
the key principles in software engineering. This principle states that a given
problem involves different kinds of concerns, which should be identified and
separated to cope with complexity, and to achieve the required engineering quality
factors such as robustness, adaptability, maintainability, and reusability. The

separation of concerns principle is a ubiquitous software engineering principle,
which can be applied in various ways.

Concerns. Despite a common agreement on the necessity of the application of the
separation of concerns principle, there is not a well-established understanding of
the notion of concern. For example, in object-oriented methods the separated
concerns are modeled as objects and classes, which are generally derived from the
entities in the requirement specification and use cases. In structural methods,
concerns are represented as procedures. In aspect-oriented programming, the term
concern is extended with the so-called crosscutting properties such as
synchronization, memory management and persistency. In a sense one can
consider this as a generalization of the notion of concern in the context of
programming languages. Although we consider this as a natural development, it
increases the necessity of renewed understanding of what concerns are because
concerns are not anymore restricted to objects and functions. Moreover, the task of
separating the right concerns is complicated because one has now to deal with
larger set and variety of concerns.

Any engineering process has many things about which it cares [1]. These range
from high-level requirements ("The system shall be stable") to low-level
implementation issues ("Remote values shall be cached"). Some concerns are
localized to a particular place in the emerging system ("When the Ctrl+A hot key
is pressed, a defined window shall pop up"), some involve systematic behavior
("All exception handling shall be traced"). Generically, we call all these concerns,
though AOSD technology is particularly directed at the last, systematic class.

2.1.1 Problem Statement

Modular Decomposition. The separation of concerns principles states actually
that each concern of a given software design problem should be mapped to one
module in the system. Otherwise, the problem should be decomposed into
modules such that each module has one concern. The advantage of this is that
concerns are localized and as such can be easier understood, extended, reused, and
adapted. This decomposition process is illustrated in Fig. 1a. The design problem
is decomposed into concerns (C1, C2…Cn) and each of these concerns is mapped
to a separate module (M1, M2…Mn). A module is an abstraction of a modular unit
in a given design language (e.g. class or function) [5].

Crosscutting Concerns. Many concerns can indeed be mapped to single modules.
Some concerns, however, cannot be easily separated, and given the design
language we are forced to map such concerns over many modules. This is called
crosscutting. In Fig. 1b, for example, concern C2 is mapped to the modules M1, M2
and Mn-1. We say that C2 is a crosscutting concern or an aspect. Examples of
aspects are e.g. tracing, synchronization, and load balancing. Aspects are not the
result of a bad design but have more inherent reasons. A bad design including
mixed concerns over the modules could be refactored to a neat design in which

each module only addresses a single concern. However, if we are dealing with
these crosscutting concerns this is in principle not possible, that is, each
refactoring attempt will fail and the crosscutting will remain. A crosscutting
concern is a serious problem, since it is harder to understand, reuse, extend, adapt
and maintain the concern because it is spread over many places. Finding the places
where the crosscutting occurs is the first problem, adapting the concern
appropriately is another problem.

Figure 1

(a) Mapping concerns C1, C2…Cn to modules M1, M2…Mn, (b) Concern C2 crosscuts modules M1, M2
and Mn-1

Things may even worsen if we have to deal with multiple crosscutting concerns.
For example in Fig. 2a we have to deal with 2 crosscutting concerns C2 and C3.

Figure 2

(a) Crosscutting concerns (C2 and C3), (b) Join points, Tangling and Crosscutting concerns

Tangled Concerns. Since we cannot easily localize and separate crosscutting
concerns several modules will include more than one concern. We say that the

concerns are tangled in the corresponding module. For example in Fig. 2a, the
concerns C2, C3 and Cn-1 are tangled in the module Mn-1. Note that concern Cn-1 is
not crosscutting.

Join points. In Fig. 2b the same information is depicted as in Fig. 2a. The
modules are aligned vertically and the concerns horizontally. The circles represent
the places where the concerns crosscut a module. These are called join points. Join
points can be at the level of a module (class) or be more refined and deal with sub-
parts of the module (e.g. attribute or operation). Crosscutting can be easily
identified if we follow a concern in a vertical direction (multiple join points).
Tangling can be detected if we follow each module in the horizontal direction.

2.1.2 Aspect Decomposition and Weaving

Aspect. Obviously, a given design problem can have crosscutting concerns and
conventional abstraction mechanisms fail to cope appropriately with these
concerns. AOSD provides explicit abstractions for representing crosscutting
concerns, referred to as aspects. As such, a given design problem is decomposed
into concerns that can be localized into separate modules and concerns that tend to
crosscut over a set of modules.

M1

M3

M2

Mn

Mn-1

.

.

.

Cn-1 CnC3C2C1
. . .

Aspect Separation

C2

C3

Modules and Concerns
mapped to single modules

Aspects

+

M1

M3

M2

Mn

Mn-1

.

.

.

Cn-1

Cn

C1

Figure 3

Aspect separation

Pointcut specification. To specify the points that the aspect crosscuts a pointcut
specification is used. A pointcut specification is, essentially, a predicate over the
complete set of join points that the aspect can crosscut. A pointcut specification
can enumerate the join points or provide a more abstract specification. In an
abstract sense, aspects can thus be specified as follows.

 Aspect name

 Pointcut specification

Formatted: Bullets and
Numbering

Advice. The crosscutting is actually localized in the pointcut specification. The
pointcut specification indicates which points the aspect crosscuts but it does not
specify what kind of behavior is needed. For this the concept of advice has been
introduced. An advice is a behavior that can be attached before, after, instead of or
around a join point in the pointcut specification.

 Aspect name

 Pointcut specification

 Advice

Weaving. Having separated the aspects, their management (e.g. maintenance or
reuse) become easier and consistent. In order to obtain a complete system from the
separated artifacts, AO provides the weaving mechanism. Weaving is the process
of composing core functionality modules with aspects, thereby yielding a working
system. The various AO approaches have defined several different mechanisms
for weaving.

There are several aspect-oriented approaches and languages. Although they differ
in the way of specifying aspects, pointcuts, advices, and weaving basically adopt
the concepts presented above.

In summary, AOSD emphasizes the separation of concerns and is designed to
handle complex structures. Both AOP and AOM are part of the AOSD paradigm.

2.2 Aspect-Oriented Programming

The history of programming has been a slow and steady climb from the depths of
direct manipulation of the underlying machines to linguistic structures for
expressing higher-level abstractions. The progress in programming languages and
design methods has always been driven by the invention of structures that provide
additional modularity. Subroutines assembled the behavior of unstructured
machine instructions, structured programming argued for semantic meaning for
these subroutines, abstract data types recognized the unity of data and behavior,
and object-orientation (OO) generalized this to multiplicity of related data and
behaviors.

The current state-of-the-art paradigm in programming is the object-oriented (OO)
technology. With objects, the programmer is supposed to think of the universe as a
set of instances of particular classes that provide methods, expressed as imperative
programs, to describe the behavior of all the objects of a class.

Object-orientation has many advantages, particularly in comparison to its
predecessors. Objects facilitate modularization. The notion of sending messages to
objects helps concentrate the programmer's thinking and aids understanding code.

Inheritance mechanisms in object systems provide a way both to assign the related
behaviors to multiple classes and to make exceptions to that regulation.

Objects are not the last improvement in programming paradigms. AOSD
techniques are the next step in this progression. Aspects introduce new linguistic
mechanisms to modularize the implementation of concerns. Each of the earlier
steps (with the minor exception of multiple inheritance in OO systems) focused on
centralizing on a primary concern. AO, like its predecessors, is about recognizing
that software systems are built with respect to many concerns and those
programming languages, environments, and methodologies must support
modularization mechanisms that honor these concurrent concerns. AO is
technology for extending the kinds of concerns that can be separately and
efficiently modularized [1].

AOP is a technology for separation of crosscutting concerns on programming
language level into single units referred to as aspects. An aspect is a modular unit
of crosscutting implementation. It encapsulates behaviors that affect multiple
classes into reusable modules. Aspectual requirements are concerns that introduce
crosscutting in the implementation. Typical aspects are synchronization, error
handling or logging. With AOP, each aspect can be expressed in a separate and
natural form, and can be automatically combined together into a final executable
form by an aspect weaver. As a result, a single aspect can contribute to the
implementation of a number of procedures, modules or objects, increasing
reusability of the codes. The differences between AOP and traditional
programming are shown in Fig. 4. Compared to traditional approaches AOP
allows separation of crosscutting concerns at source code level. The aspect code
and other part of the program can be woven together by an aspect weaver before
the program is compiled into an executable program.

Figure 4

Traditional and AOP approaches

2.3 Aspect-Oriented Modeling

Modeling is a key tool in software engineering, allowing the software production
process to be represented at a variety of stages and levels of detail. Aspect-
oriented modeling techniques allow system developers to address crosscutting and
quality objectives, such as security separately from core functional requirements
during system design [12]. An aspect is a pattern of structure and behavior such
that it is a crosscutting realization of common structural and behavior
characteristics [13].

An aspect-oriented design model consists of a set of aspects and primary models.
An aspect model describes how a single objective is addressed in the design, while
the primary model addresses the core functionality of the system as given by the
functional requirements.

Figure 5

An overview of the AOM approach

In AOM, weaving rules are used to weave aspect models with the primary model.
These rules are stored separately from the aspect and the primary model, which
makes both the aspect models and the rules reusable. The aspects and the primary
model are composed before implementation or code generation. The composed
model supports design analysis. Composition is most often performed manually,
but there are tools that automate part of the composition. Fig. 5 gives an overview
of AOM.

An aspect-oriented approach is introduced in [14] for software models containing
constraints, where the dominant decomposition is based upon the functional
hierarchy of a physical system. This approach provides a separate module for
specifying constraints and their propagation. A new type of aspect is used to
provide the weaver with the necessary information to perform the propagation: the
strategy aspect. A strategy aspect provides a hook that the weaver may call in
order to process the node-specific constraint propagations.

3 Aspect-Oriented Methods in VMTS

Visual Modeling and Transformation System (VMTS) [15] [16] is an n-layer
metamodeling environment which supports editing models according to their
metamodels, and allows specifying OCL constraints. Models are formalized as
directed, labeled graphs. VMTS uses a simplified class diagram for its root
metamodel (“visual vocabulary”).

Also, VMTS is an UML-based [13] model transformation system, which
transforms models using graph rewriting techniques. Moreover, the tool facilitates
the verification of the constraints specified in the transformation step during the
model transformation process.

The modularization of crosscutting concerns is also useful in model
transformation. Model transformation means converting an input model available
at the beginning of the transformation process to an output model or to source
code. Models can be considered special graphs; simply contain nodes and edges
between them. This formal background facilitates to treat models as labeled
graphs and to apply graph transformation algorithms to models using graph
rewriting. Therefore a widely used approach to model transformation applies
graph rewriting [17] as the underlying transformation technique, which is a
powerful technique for graph transformation with a strong mathematical
background. The atoms of graph transformations are rewriting rules, each rule
consists of a left-hand side graph (LHS) and right-hand side graph (RHS).
Applying a graph rewriting rule means finding an isomorphic occurrence (match)
of LHS in the graph the rule being applied to (host graph), and replacing this
subgraph with RHS.

In the VMTS approach, LHS and RHS of the transformation steps are built from
metamodel elements. This means that an instantiation of LHS must be found in the
host graph instead of the isomorphic subgraph of LHS. These metamodel-based
rewriting rules extended with control structure are called Visual Model Processors
(VMP) in VMTS. Previous work [15] has shown that the rules can be made more
relevant to software engineering models if the metamodel-based specification of
the transformations allows assigning Object Constraint Language (OCL) [18]
constraints to the individual transformation steps.

The Object Constraint Language (OCL) is a formal language for analysis and
design of software systems. It is a subset of the UML standard [13] that allows
software developers to write constraints and queries over object models.

The increasing demand for visual languages (VL) in software engineering (e.g.
Unified Modeling Language - UML; Domain-Specific Languages - DSLs)
requires more sophisticated transformation mechanisms for diagrammatic
languages. Although these VLs can often be modeled with labeled, directed
graphs, the complex attribute dependencies peculiar to the individual software

engineering models cannot be treated with this general model. Consequently, often
it is not enough to transform graphs based on the structural information only, we
want to restrict the desired match by other properties, e.g. we want to match a
node with a special integer type property whose value is between 4 and 12.

To define the transformation steps precisely beyond the structure of the visual
models, additional constraints must be specified which ensures the correctness of
the attributes, or other properties can be enforced. Using OCL constraints in
modeling is a suitable choice. It provides a solution for the unsolved issues. In our
experience, constraints are proven to be useful in model transformations as well.

Often, the same constraint is repetitiously applied in many different places in a
transformation and crosscuts it. It would be beneficial to describe a common
constraint in a modular manner and designate the places where it will be applied.
Therefore, the motivation of our aspect-oriented technique-based research is to
eliminate the crosscutting constraints in visual model transformation steps.

Figure 6

A sample metamodel and a transformation step with a crosscutting constraint

In Fig. 6 an example is depicted for crosscutting constraints. There is a
transformation which modifies the properties of Person type objects and we would
like the transformation to validate that the age of a Person is always under 200
(Person.age < 200). It is certain that the transformation preserves this property if
the constraint is defined for all rewriting rule element whose type is Person (Fig.
6b). This means that the constraint can appear several times, and therefore the

constraint crosscuts the whole transformation, its management is not consistent.
E.g. constraint maintenance must be performed on its all occurrence. Furthermore,
often it is difficult to reason about the effects of a complex constraint, when it is
spread out among the numerous nodes in a transformation step.

Therefore, we developed a mechanism to separate this concern. Having separated
the constraints from the pattern rule nodes (nodes of the transformation steps), we
also need a weaver method which facilitates the propagation (linking) of
constraints to transformation step elements.

This means that using separation and a weaver method, we manage constraints
using AO techniques: Constraints are specified and stored independently of any
model transformation step or pattern rule node and linked to the rule nodes by the
weaver. Therefore our constraints are similar to the aspects in AOP.

Conclusions

In this paper, an overview is given about the aspect-oriented software
development, aspect-oriented programming and aspect-oriented modeling.
Furthermore, our aspect-oriented constraint management-based model
transformation approach is presented.

We have found that the source of our transformation problems is often related to
the lack of support for modularizing crosscutting concerns. As we have extended
our metamodel-based visual transformation language with an aspect-oriented
constraint management approach, it was observed that the maintainability and
understandability of our transformation steps have been increased along with the
attached constraints. Considering the correctness of the transformation, the
understandability of the constraints is crucial, since the verification is still left to
the intuition and the experience of the designer.

Using AO constraints in metamodel-based model transformations, we achieved
several benefits. Consistent constraint modification and simple constraint removal
became possible. The same constraint does not appear repetitiously in many
different places. Moreover, it is not necessary for the transformation steps to be
aware of the constraints, or for the modeler who creates the transformation steps.
Transformation steps are applicable with or without constraints. We can assign
constraints to the transformation as a whole, and not only to the individual
transformation steps.

These methods have successfully been applied in industrial projects, like
generating user interface from resource model and user interface handler code
from statechart model for Symbian [19] and .NET CF mobile platform [20].

The number of publications related to aspect-oriented techniques is quite large. As
a starting point we recommend the special issue of CACM devoted to the topic
[6].

References
[1] Robert E. Filman, Tzilla Elrad, Siobhan Clarke, Mehmet Aksit, Aspect-

Oriented Software Development, Addison-Wesley, 2004
[2] Sixth International Workshop on Aspect-Oriented Modeling,

http://dawis.informatik.uni-essen.de/events/AOM AOSD2005, Chicago,
IL, March 2005

[3] Seventh International Workshop on Aspect-Oriented Modeling,
http://dawis.informatik.uni-essen.de/events/AOM_MODELS2005/
Montego Bay, Jamaica, October 2, 2005

[4] AOSD Homepage, http://www.aosd.net/
[5] The Aspect-Oriented Software Architecture Design Portal,

http://trese.cs.utwente.nl/taosad/aosd.htm
[6] Communications of the ACM Volume 44, Issue 10, October 2001
[7] The AspectJ Programming Guide, http://www.aspectj.org
[8] AspectC++, http://www.aspectc.org/
[9] HyperJ, http://www.research.ibm.com/hyperspace/HyperJ/ HyperJ.htm
[10] ComposeJ, http://trese.cs.utwente.nl/prototypes/composeJ/index.htm
[11] DemeterJ, http://www.ccs.neu.edu/research/demeter/DemeterJava/
[12] G. Georg, R. France and I. Ray, An Aspect-Based Approach to Modeling

Security Concerns. In Proceedings of the Workshop on Critical Systems
Development with UML, Dresden, Germany, 2002, pp. 107-120

[13] OMG UML 2.0 Specifications, http://www.omg.org/uml/
[14] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck, Handling

Crosscutting Constraints in Domain-Specific Modeling, Communications
of the ACM, October 2001, pp. 87-93

[15] T. Levendovszky, L. Lengyel, G. Mezei, H. Charaf, A Systematic
Approach to Metamodeling Environments and Model Transformation
Systems in VMTS, Electronic Notes in Theoretical Computer Science,
International Workshop on Graph-Based Tools (GraBaTs) Rome, 2004

[16] The VMTS Homepage. http://avalon.aut.bme.hu/~tihamer/research/vmts
[17] G. Rozenberg (ed.), Handbook on Graph Grammars and Computing by

Graph Transformation: Foundations, Vol.1 World Scientific, Singapore,
1997

[18] OMG Object Constraint Language Spec. (OCL), http://www.omg.org
[19] L. Lengyel, T. Levendovszky, G. Mezei, B. Forstner, H. Charaf,

Metamodel-Based Model Transformation with Aspect-Oriented
Constraints, Accepted to International Workshop on Graph and Model
Transformation, GraMoT, Tallinn, Estonia, September 28, 2005

[20] L. Lengyel, T. Levendovszky, H. Charaf, Eliminating Crosscutting
Constraints from Visual Model Transformation Rules, Accepted to
ACM/IEEE 7th International Workshop on Aspect-Oriented Modeling,
Montego Bay, Jamaica, October 2, 2005

