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Abstract: Neural information processing models largely assume that the samples for 
training a neural network are sufficient. Otherwise there exist a non-negligible error 
between the real function and estimated function from a trained network. To reduce the 
error in this paper we suggest a diffusion-neural-network (DNN) to learn from a small 
sample. First, we show the principle of information diffusion using properties of quasi-
triangular fuzzy numbers. After that, we apply this principle to construct the DNN. Finally, 
we give an example to show that the approximation with DNN is better than the 
conventional back propagation network. 
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1 Introducion 

Generally, the data are facts characterizing the phenomena of the real world and 
information is such a structured sample of these datas that helps the exploration of 
phenomena. In many cases the data are only a part of the facts so the information 
deducted from them is uncertain. For example: if there are only few observations 
to the examination of a phenomenon then the information concluded will be 
uncertain. 

If there are only few data available in the examination of a phenomenon we can 
assign these to some already existing statistical distribution (the Bayes method, 
Martiz and Lewin, 1989) The structured sample will have an informational value. 
The question arises: what to do in the case when we don’t know a priori statistical 
distribution? 

Many successful solutions of the practical problems show that in such a case the 
theory of fuzzy sets can be applied with a very good efficiency. This theory 
enables the processing of uncertain information, to be more precise, it writes down 
the fuzzy logical assertions in an exact mathematical form (L. A. Zadeh, 1975). 



In a given space X let A be an sample of data that come from the observation of 
some phenomenon. Our aim is to search for a real relation among the state 
parameters of the phenomenon with the help of the data. Let us denote the real 
relation with R. The method that defines the R from sample A is called an 
operator. Examples for operators: data series analysis, correlation examination, 
hypothesis examination, the method of artificial neural networks, etc. 

Since the membership functions of the fuzzy sets diffuse the information among 
the fuzzy information sets, the methods (operators) that search for relations with 
the help of such membership functions are called information diffusion methods. 

The present paper deals with the diffusion principle known from the theory of the 
fuzzy sets and the application of the principle. In the first part we explain the basic 
concepts of fuzzy sets, fuzzy numbers and quasi-triangular fuzzy numbers with the 
help of the triangular norm. In the second part we prove the principle of 
information diffusion with the help of the quasi-triangular fuzzy numbers. In the 
third part we apply the principle of information diffusion to artificial neural 
networks. 

2 Preliminaries 

This section reviews the definitions and basic propositions applied in this paper. 

Let X be a set. The mapping μ : X → [0, 1] is called membership function, and the 
set A  = { (x, μ (x))  /  x ∈ X} is called fuzzy set on X. The membership function of 
A is denoted by μA . 

A mapping T : [0,1] ×  [0,1] → [0,1] is a triangular norm if T is symmetric, 
associative, non-decreasing in each argument and T(x, 1) = x, for all x ∈ [0,1]. 

A triangular norm T is said to be Archimedean if T is continuous and T(x, x) < x, 
for all x ∈ [0,1]. 

Every Archimedean triangular norm is representable by a continuous and decre-
asing function g : [0,1] → [0,+∞] with  g (1) = 0 and  T(x, y) = g[– 1]  (g(x)+ g(y)), 
where 
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Let p ∈ [1, +∞] and g : [0, 1] → [0, +∞] be a continuous, strictly decreasing 
function with boundary properties  g (1) = 0 and +∞≤=→ 00 )(lim gtgt . The set 
of quasi-triangular fuzzy numbers is 
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where χA is characteristic function of the set A. The elements of Ng will be called 
quasi- triangular fuzzy numbers generated by g with centre a and spread d and we 
will denote them by < a, d > (M. Kovács, 1992). 

 
Figure 2.1 

Quasi-triangular fuzzy number < 3, 1 >  if  g(t) = 1 – t2 

As follows from the definition of Tgp-Cartesian product, the membership function 
of quasi-triangular fuzzy numbers pair (< a, d >, < b, e >) is 
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for all (x, y) ∈  RR×  RR. 

 
Figure 2.2 

The quasi-triangular fuzzy numbers pair (< 10, 1 >, < 8, 2 >) if g(t) = 1 – t,  p = 2 and  p = 1.5 
respectively 

Proposition 2.1 (Z. Makó, 2002) If  p∈ [1,+∞), d > 0 and e > 0, then the α level 
of quasi-triangular fuzzy numbers pair ( < a, d >, < b, e >) is 
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and if p = +∞, then 
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3 The Diffusion of Information 

Let A be an sample of data in a given normed space X that, come from the obser- 
vation of some phenomenon. Let us denote a real relation with R. The method that 
defines the R from sample A is called an operator. The set of all operators we 
denote by Γ. 

Definition 3.1  Let R be a real relation in X. The sample A is a correct-data set to 
R on universe U ⊂ X if there exists an operator γ such that we can obtain a relation 
R(γ, A) equal to the restriction of R at U. 

Definition 3.2  Let R be a real relation in X. The sample A is an incomplete-data 
set to R on universe U ⊂ X if there doesn't operator that we can obtain the 
restriction of R at U from A. 

The concept of incompleteness has captured very many bright minds. According 
to the monumental work of B. Russell and A. N. Whitehead, published between 
1910 and 1915, the Principia Matematica logic meant the certain, unambiguous 
foundation of mathematics. They were wrong, since K. Gödel’s theory of 
incompleteness from 1931 (Gödel, 1931) says: “all the axiomatic formulations of 
number theory contain uncertain statements.” 

Is there – even if only in theory – such a method (algorithm) that can solve all 
mathematical problems? – A. Turing asked the question rhyming with Gödel’s 
theorem. Analising logic-based methodological processes performed by man and 
the functio of a theoretical computer he reached the conclusion that such algorithm 
did not exist. A. Church, American logician reached the same standpoint. The 
Church-Turing theorem says that every problem that can be solved with an 
algorithm with a finite procedure can also be calculated with the Turing machine. 

G. J. Chaitin (1990) examined the concept of incompleteness from the aspect of 
coincidence and showed that, the breakpoint probability of the non deterministic 
Turing machine program is algorithmically randomized. 



According to A. Turing’s and Chaitin’s ideas incompleteness and uncertainty are 
correlated. Let’s see the two bit series below as an example: 

01010101010101010101          01101100110111100101 

One of the questions arising: are these series randomized? The answer is 
ambiguous, they may be, but it is possible to construct such an algorithm (and 
even more algorithms) for both series that will return its first 20 bits identical with 
the given series. Moreover, may we continue the series in any way, theoretically 
there is an algorithm that return  the continuation. So the incompleteness of the 
series  makes the answer uncertain. Algorithms in their own do not decide 
mathematical truth. The validity of the algorithms can always be stated with the 
help of external devices. 

3.1 Characteristic Function of the Sample 

Definition 3.3  Let { }nkA k ,...2,1/ == x  be a deterministic sample in universe U 
⊂ X. The characteristic function of A is { }1,0: →× UAAχ , where 

1( ), =ux kAχ if u = xk and 0)( , =ux kAχ   if u ≠ xk. The relation derived from 
sample A and operation γ we denote by R(γ,A). 

For example, if we inted to determine the elastic constant of a spring then we do 
measurements. We measure the relative elongation Δl = l – l0 and the spring force 
induced by elongation Δl. In this case the sample is A = {(Δli, Fi) ∈ X /i = 1,2,...,n} 
and U ⊂ X = R2. Let γ be the least squares method, and  the searched  real relation 
R(γ,A) is the Hook’s formula: F = k⋅Δl. The function 
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Theoretically, the sample A is correct data-set even if i =1, because from Hook’s 
formula it possible to determine the value of k with the first measurement. 

3.2 Scattering Function of the Information 

Definition 3.4  We consider a division Uj,  j = 1,...,m of universe U, i.e. 

. if    ,1 kjUUUU kj
m
j j ≠∅=∩= =U  

The characteristic function of the division Uj is { }1,0: →×UAmχ , where 

1( ), =ux kAχ if  xk ∈ Uj   and 0)( , =ux kAχ   if xk ∉ Uj , for all u ∈ Uj. 

The characteristic function is replaceable with membership function    μ : A×U → 
[0,1]. In this case, the value μ(xk ,u) shows that the sample’s element xk how much 



is in set Uj. For example, if X = R then the membership function of quasi-
triangular fuzzy number 
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is a membership function of division to interval with centre xk and length 2d. 

Therefore, μ(:,uj) is the membership function of Uj, for all uj∈ Uj. 

Definition 3.5  The family of membership functions μ (:, uj) : U→[0,1], j = 1,...,m 
is a fuzzy division of the U. 

Since, the membership functions μ (:, uj) diffuse the information x among the 
fuzzy sets Uj, hence the relations searching methods (operators) that use these 
membership functions will be called information-diffusion methods (operators). 

Definition 3.6  Let A be a sample of universe U. The function μ : A×U→[0,1] is a 
scattering function of the information, if 

 i)    μ(xk, xk) = 1, for all xk ∈ A∩U; 

 ii)  for all xk ∈ A and for all  u,v∈U , if ||xk – u|| ≤ ||xk – v|| then 

μ(xk, u)  ≥ μ(xk, v). 

For all elements xk of the sample A the scattering function define a fuzzy number 
with centre in xk and membership function μ(xk,:):U→[0,1]. The simplest 
scattering function is μt = χ. This function will be called trivial scattering function 
of the information. 

The scattering function of the information shows  that the data u how much can be 
the correct data of a phenomena. For example, if u is in sample A then u is 
absolutely correct data of the phenomena. Using the scattering function μ, the 
sample A can be expand with new elements and so we get a sample notated by 
A(μ,U) with elements  (xk, uj, μ(xk, uj,)) ∈ A×U×[0,1], where uj ∈ U,  j = 1,...,p. 

If X = Rn then it possible to define scattering function with help of quasi-triangular 
fuzzy numbers. Let p ∈ [1, +∞] and g : [0, 1] → [0, +∞] be a continuous, strictly 
decreasing function with boundary properties  g(1)=0 and +∞≤=→ 00 )(lim gtgt . 
The triangular norm generated by gp is Tgp(x,y) given by formula (2.1). If we 
fuzzyfied all elements of sample A, i.e. for all components xki  of vector xk ∈ A we 
assign a quasi-triangular fuzzy number < xki, λ(xki)> with spread λ(xki) > 0, i = 
1,...,n. 

As follows from the definition of Tgp-Cartesian product (2.1) the scattering 
function of information is given by 
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 (3.1) 

3.3 The Principle of Information Diffusion 

Let R be a relation on universe U⊂ X and γ be an operator. If we are using the 
sample A ={xk ∈ X/ k = 1,2,...,n} to estimate the relation R then our method is a 
nondiffusion estimator, and if we are using the sample A(μ,U), where μ is a 
nontrivial information scattering function, then our method is a diffusion 
estimator. The trivial information scattering function yield a nondiffusion 
estimator. 

Theorem 3.1  (Principle of information diffusion) Let R be a relation on universe 
U⊂ X=Rn, where U is a convex set. Let A ={xk ∈ X / k = 1,2,...,n} be a 
deterministic sample for estimation of R on universe U ⊂ X. Assuming that γ is the 
best operator of relation R for some measurement of the error. The sample A is 
incomplete-data set of the relation R on U if and only if there exist an nontrivial 
information scattering function μ such that, if we apply the operator γ  to fuzzyfied 
sample A(μ,U) then we get a better estimation of R. 

 
Figure 3.1 

Principle of information diffusion 

Proof.  For the intelligibility we proof this theorem in X = R². The proof of the 
general case is similar. In this case U = [a,b]×R and the relation R is a subset of U. 
The first component of the R relation’s elements is input (independent) and the 
second component is output (dependent) variable of R. In figure (3.1) the relation 
R is showed by a curve. Let A={(x1,y1), (x2, y2),..., (xn, yn)} be a sample in U. If A 
is incomplete-data set of the relation R then for all operator γ the difference 
between R and R(γ,A) is greater than zero. The error is 



( ) ( )[ ] ( ) ( ) ( ){ } .0 ,',' and , /''  sup
2/122 >=∈∈−+− εγ ARyxRyxyyxx  (3.2) 

We diffuse the information derived from sample A using the scattering function 
(3.1). Therefore, we get the fuzzyfied sample 

( ) ( ) ( )( ){ },,...,1 / ,,, , nkyyxxUAA kkkk =><><== λλμ  (3.3) 

where ( )><>< )(,,)(, kkkk yyxx λλ  is a quasi-triangular fuzzy numbers pair 
with )( kxλ , 0)( >kyλ . For p =2 the scattering function is 

( ) ( )( )

( ) ( ) ( ) ( )

⎪
⎪
⎩

⎪⎪
⎨

⎧
≤−≤−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −

=

−

.

, nd ,

,

00

2/122
1

otherwise

gyyvagxxuif
y

vy
x

ux
g

u,v,yx

kiki
k

k

k

k

kk

λλ
λλ

μ
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It follows from proposition 2.1 that the level sets of μ are ellipses. Our problem is 
that: to determine the spreads )( kxλ  and )( kyλ  such that the approximation with 

operator γ and A  let be less than ε, i.e. the difference between level set μkp and 
curve R is less than ε  ( see figure 3.1. c). The graph (a) of figure 3.1 shows, that, 
if we apply the operator γ to sample A then all elements of relation R(γ,A) 
absolutelly is in R(γ,A) (the membership value to R(γ,A) of all elements are one). 
Consequently, all level sets are equal. The graph (b) of figure 3.1 shows that, if we 
apply the operator γ  to sample A then all elements of relation R(γ, A ) are quasi-
triangular fuzzy numbers pair. We will denote by Rkp the μkp level set of R(γ, A ). 
We show the projection of R(γ, A ) on graph (c) of figure 3.1. As shown in the 
illustration, the projection of error to axis of reference Oy is | yr – yk | = f,  similarly 
the projection of error to axis of reference Ox is | xr – xk | = e. We select an element 
P(xp,yp) in Rkp such that the distance between R and P is less than the distance 
between R and K. We denote by l = | yp – yr | and by h = | xp – xr |. Then μkp= 
μ((xk,yk),(xp,yp)) and 
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If we consider that )( kxλ = )( kyλ , then 
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It possible to select 
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If A is correct-data set of relation R then ɛ = 0. Therefore, from (3.5) follows that 
the spread of all quasi-triangular fuzzy numbers are zero. In this case the 
information scattering function is trivial.   

4 The Approximation Property of BP Artificial 
Neural Network 

The neural network can be understood as a mapping f : Rn→Rm, defined by  
y = f (x) = g (W⋅x), where x is the input vector, y is the output vector, W is the 
weight matrix and g is the activation function. The mapping f  can be decomposed 
into a chaining of mappings; the result is a multi-layer network Rn→Rp→ 
Rq→…→Rm. The algorithm for computing W is often called the training 
algorithm. The most popular neural network are the multi-layer back-propagation 
networks whose training algorithm is the well-known gradient descendent method. 
Such networks are called back-propagation (BP) networks. 

An artificial neural network is a learning machine whose function depends on the 
training examples. So, the machine does not recognize the real relation but it 
determine a numerical relation among the state parameters. According to the 
principle of information diffusion we can increase the certainty of the determined 
relation if we multiply the number of the training examples with the help of an 
appropriate information scattering function or if we apply a banded approach. 
Neural networks trained in this manner are called  diffusion-neural-networks (C.F. 
Huang and Y. Shi, 2002; C. F. Huang and C. Moraga, 2004). 

A number of authors have discussed the universal approximation property of BP 
networks. For example, in 1989 G. Cybenko showed that any f: [a,b]→R 
continuous function can be approximated by a neural network with one internal 
hidden layer using sigmoidal activation function (G. Cybenko, 1989). Also in 
1989 K. Hornik et al. proved that the multi-layer networks can approximate the 
continous function to any degree of accuracy, i.e. multi-layer networks have the 
universal approximation property (K. Hornik et al., 1989). After that, in 1995 J. 
Wray and G. G. R. Green showed that, the universal approximation property does 
not hold in practice for networks implemented on computers (J. Wray and G. G. 
R. Green, 1995). For illustration this property, we consider the function  
f : [0,1]→R, f(x)=x–x². Our task is to learn the function with the sample  
A = {(0,0),(0.25,0.1875),(0.5,0.25),(0.75,0.1875),(1,0)}. It is easy to show by 
example that, the BP networks, for any topology, can not approximate the function 
f to any degree of accuracy. In our experiments the minimal value of difference 



between function f and function defined by BP network is greater than 0.001, for 
any topology of network (fig. 4.1). The approximation is not efficient because the 
sample A is incomplete-data set to relation f. The approximation with BP network 
is efficient if A is correct-data set to  f. 

 
Figure 4.1 

Approximation with BP network 

From information diffusion principle follows that, the accuracy of approximation 
is increasable if we use a scattering function μ to diffuse the information derived 
from sample A. 

4.1 Banded Approximation 

Let f : [a,b]→R be a given continuous function and A={(xk,f(xk)) ∈ [a,b]×R / 
k=1,2,...,n} be a given sample. We diffuse the information derived from this 
sample with the generator function g:[0,1]→[0,∞], where g(1)=0 and 

( ) ∞≤=∞→ 0lim gtgt . Thus, we obtain the fuzzyfied 

( )( ){ },,...,1 / ,,, nkxfxA kkkk =><><= βα  

sample, where αk, βk ≥ 0 are the spread of quasi-triangular fuzzy numbers <xk, αk> 
and <f(xk), βk>. Above derivative sample can be used to train a conventional BP-
network with two input value xk and αk, and two output value o1(xk, αk) and 
o2(xk, αk). After the training we get a weight system where 

( ) ( )( ) ( )( )[ ]∑ =
−+−=

n

k kkkkkk xoxoxfH
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2
2

2
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the sum of square errors is less than a given number δ > 0. The trained network for 
any input values x and 0 return the output values y and β. Using the generator 
function g, we can construct a band [y- g(γ)β,y+g(γ)β] around to function f for any 
level value γ∈[0,1]. The approximation has precision ε on the level γ, if the 
distance between f and γ level set [y-g(γ)β , y+g(γ)β] is less than ε. 



 
Figure 4.2 

The banded approximation 

4.2 Approximation with Derivative Sample 

Let f : [a,b]→R be a given continuous function and A={(xk, f(xk)) ∈ [a,b]×R / 
k=1,2,...,n} be a given sample. We diffuse the information derived from this 
sample with the generator function g:[0,1]→[0,∞], where g(1)=0 and 

( ) ∞≤=∞→ 0lim gtgt . If we consider two points xk – δ and xk + δ around on points 
xk then the membership value of these points to fuzzy set B =projOx(A) are 
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Since, in practice δ is relative small therefore  f (xk ± δ) ≈ f (xk )± δ and 

( ) ( )δμμ ±= kAprojk xf
Oy

. 

Consequently, the derived sample is 

( ) ( )( ){ }.,...,1/,,,,1,,1, nkxfxyxA kkkkkk =±±= μδμδ  

Above derivative sample can be used to train a conventional BP-network, where 
the first two components are input values and second two components are output 
value of BP network. We show the absolute accuracy of the approximation with 
samples A and A  on the figure 4.3. We can see that, the approximation with A  is 
better than with A. The average of square errors (ASE) is 

( ) ( )( )∑ =
−=

p

k ii xoxf
p

E
1

2 ,1  

where xi∈[0,1], I = 1,…,p are the check-test points and o(xi) are the values 
calculated by network if the input value is xi. In our case the ASE for sample A  is 
E(A) = 0.000002051706 and for sample A  is E( A ) = 0.0000005069. 



 
Figure 4.3 

Approximation with derivative sample 

The above example shows that, the approximation is better with derived sample 
than with original sample. The principle of information diffusion pronounces this 
fact, but not gives the method of expansion. 
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