
Presentation Framework – an Environment for
Editing Metamodels

Gergely Mezei, Tihamér Levendovszky, Hassan Charaf
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
{gmezei, tihamer, hassan}@aut.bme.hu

Abstract: The growing complexity of the software systems made the model-based
application development one of the most focused research fields. General purpose
modeling languages, like UML are not always flexible enough to express domain specific
features. Domain Specific Modeling Languages (DSMLs) are defined to model the special
features, and the rules of these domains. One way to define DSMLS is metamodeling.
Metamodeling techniques facilitate creating domain-specific modeling environment in an
efficient and simple way. Although metamodeling techniques are capable of expressing the
domain-specific constraint of visual languages, the presentation still cannot follow this
flexibility. Editing frameworks are required that support customization with minimal
programming effort. The Visual Modeling and Transformation System (VMTS) is a
metamodeling environment that offers graphical metamodel editing features using the
VMTS Presentation Framework (VPF). The goal of this paper is to present the
metamodeling environment based on VPF with all of their metamodel specific features and
compare the capabilities of VPF with other metamodeling environments.

Keywords: DSML, metamodeling, modeling framework

1 Introduction

Model-driven software eingineering became an essential approach in software
development. Classic modeling tools have hard-wired model definitions, hence
they cannot be used in domains that require customized model definition
languages. Domain Specific Modeling Languages (DSML) constitute a way to
create customized models for special domains where generic modeling languages
would fail. Metamodeling is the way to achieve a more dynamic model definition
and model handling. The proliferation of high level languages, object-oriented
technologies and the proliferation of CASE tools made metamodeling even more
important. Each model has its metamodel that defines the available elements (and
their attributes) and the topology between elements (e.g. a ClassDiagram is the

metamodel of an ObjectDiagram). Although metamodeling is flexible enough to
fulfill the requirements of the domain specific modeling, it does not define the
way of visualization of the elements (the concrete syntax). The abstract syntax
(the metamodel definition) often fulfills the needs of the developers and
researchers, but a wide variety of presentation is required for the end-user, who
might not be familiar with the inner abstract graph representation of the tool.
Solutions are needed which are able to handle models and their metamodels
uniformly and provide a user-friendly, graphical way to edit the models.

Visual Modeling and Transformation System (VMTS) is an n-layer metamodeling
environment [1]. The VMTS Presentation Framework (VPF) is the graphical
environment part of VMTS used for displaying and editing the models with their
proprietary representation. VPF has been successfully used in many different
domains: feature models, UML 2.0 diagrams (e.g. class, object, statechart) as well
as resource editor for Symbian mobile telephones. Although the framework was
written in C# and it is based on .NET technologies, the solutions discussed here
are reusable in every high-level programming environment.

There are several frameworks that have graphical editing support for the DSMLs
in a more or less user-friendly way, but none of them is fully capable of
expressing the domain-specific constraints. Although the visualization of DSMLs
is not fully supported in these frameworks they use many notable solutions.
Besides the introduction to metamodeling in VPF, this paper also introduces the
features available in other metamodeling frameworks.

Figure 1
The structure of VMTS

2 Architecture

VMTS consists of several subsystems. The complete structure can be seen on Fig.
1. Attributed Graph Architecture Supporting Interface (AGSI) is responsible for
the graph database actions and it offers a high-level interface for the other
components. The Rule Editor and the Rewriting Engine are used for graph

transformations; Traversing Processors are used for traversing the models in order
to generate program code or other artifacts. Presentation Framework is the
graphical environment part of the VMTS used for displaying and editing the
models with their proprietary representation.
Presentation Framework consists of metamodel-variant, and metamodel-invariant
parts. The metamodel-variant parts use plugins to offer individual visualization
and editing features (Fig. 2). The plugin-based architecture guarantees the required
flexibility and customization facilities. The framework offers a core functionality,
and it can be extended by the model-specific plugins. A plugin is always attached
to a metamodel whose models it supports (e.g. UML statechart metamodel for the
statechart plugin). The connection between the plugin classes and the metamodel
elements is represented by a unique metamodel ID provided by AGSI. On loading
a model, if no plugin assigned to its metamodel was found, then a default plugin is
used, which is referred to as Abstract Syntax Plugin (Fig. 2c). This general
environment is also used for editing the first layer metamodels. The Abstract
Syntax Plugin is a part of the framework, it supports neither special visualization
methods, nor event-handling features, but it offers a feature to visualize and edit
an arbitrary model in an abstract syntax view. VMTS offers several services and
the commonly used features to make plugin writing simpler.

Figure 2
Plugin-based visualization

VPF supports three main types of the metamodel-invariant subsystems (i) the tree
representation of the model and the visualization structure (Fig. 3a), (ii) the
attribute panel, which displays the metamodel-defined data and the visualization
information (Fig. 3b), and (iii) the toolbar, which contains the model elements that
can be dropped on the canvases (Fig. 3c). These parts are discussed in detail in the
next chapters.

Figure 3
Model-invariant parts

3 Metamodel Relations

VMTS is not a common metamodeling tool based on the MOF specification. It
uses is an n-layer metamodeling environment with full transparency between the
layers, which means that each layer is handled by the same functions. Moreover,
VMTS unifies the metamodeling techniques used by the common modeling tools,
and uses model transformation applying graph rewriting as the underlying
mechanism (Visual Model Processor). The fundamental data structure is a
mathematical object: a labeled directed graph. The modeled objects are
represented as nodes, and the connection between them are treated as edges.

The primary reference for metamodel-based tools and representations is the
OMG’s MOF specification [2]. Metamodeling techniques facilitate the reuse of
the metamodels thus the reuse of the domain described by the metamodel.

The available model elements are defined in the metamodel. The toolbar (Fig. 3c)
enlists the non-abstract model elements from the metamodel. The user can drag an
element from this list, and drop it onto a canvas. The underlying technique is the
popular Prototype design pattern [3]. Although this representation is appropriate
in most cases, it is not elegant e.g. when the UML object diagram is displayed. In
this case the metamodel is a UML class diagram possibly with many classes and
associations. The traditional approach is to display an Object and a Link shapes,
and the user selects the desired type after dropping them onto the canvas.
Generality is not restricted, since the toolbar should work for models with
arbitrary metamodels. We defined a MetaMetaBased mode for the toolbar, which
means that the control displays one element for the model elements having the
same meta-metamodel element. This is exactly the behavior we wanted for the
object diagrams, since only one item is displayed for all objects (since their meta-
metamodel element is metaclass), and the associations are treated similarly. If an
object or a link is dropped on the canvas, a pop-up list appears, and offers the
available model elements in the metamodel. Moreover, this toolbar is capable of
obtaining the icons from plugins with general reflection mechanisms.

Considering the instantiation, there are two issues: the topological rules (e.g. the
instantiation of the association in the UML class diagram as links in the UML
object diagram), and attribute-related instantiation rules (e.g. the UML Class
attributes can have values in the object diagram).

Topological rules mainly define rules for relations. Relations between the
modeling elements are represented with edges between the nodes. There are three
main type of relation in VMTS: System Inheritance, System Containment and
Association (System Relationship). System Inheritance expresses inheritance
relation between the model elements, the properties are concatenated. System
Containment expresses containment relation like between motherboard and ICs.
Association expresses a connection between the elements that they can use to
communicate. These three fundamental relation types are built-in, hard-wired

relationships to provide basic functionalities. For the simplified treatment of the
edges on different layers there are two another relation types in VMTS.
SystemMetaInheritance expresses that the edge will be a SystemInheritance edge
on the next level, SystemMetaContainment express that edge will be a System
Containment edge. The edges on every level should use one of these five types as
the type of relation.

The attributes of the model elements are presented in AGSI as an XML document
(the Property XML). This XML document describes every important information
about the model element (in metamodel level), and this is used as the base of
validation on the instance level. VMTS offers an editing tool for this XML
document using a PropertyGrid. The validation is made with an XSD (Schema
XSD), that is generated from the Property XML stored in the metamodel, using an
XSL script (Fig. 4).

Figure 4

Attribute instantiation

In VMTS there are three elements to describe the structure of the attributes:
InstanceName, Attribute, and ComplexType. The InstanceName tag contains the
name of the instance level object (Class in the example). Attribute defines an
attribute, it is defined as a ComplexType, thus, it is possible to group the related
information. The tag Name contains the name, and TypeExpression describes the
type of the attribute. The TypeExpression is either a primitive type (that can be
processed with XSD), or the name of a ComplexType. Attributes tag holds the
publicity information; Multiplicity contains the minimum and maximum number
of the attribute. The short description of the attribute can be given in the
Description tag. Visible tag is made for hidden elements. The Editor tag is perhaps
the most complex. It should be supplied only if the attribute editor of .NET is not
good enough, then it contains the name of the custom editor class. RefreshAction
stores the default actions (like Draw) that should run after the value of the
attribute changed. ReadOnly, and Value tags are used for storing the read only
information, and the value provided in advance. An Attribute can have more
RefreshAttriutes, Description or Attributes tag.

The ComplexType definitions contain the structure of non-primitive attribute
types. These complex types make sure that the base types of XSD can modified to
the particular task flexible. The Name tag contains the name of the ComplexType.
This name should be given in the TypeExpression tag of the related Attribute.
After giving the name, we can define the Attributes (the parts) of the complex
type. The ComplexType definitions can be nested. IsEnum can be used to define
enum types. This usage of the complex type is displayed as a dropdown list.

Recall that the attributes are displayed in the property grid (Fig. 3b) that offers a
standard, user-friendly way to edit the values. Besides the default presentation,
VPF has to ability to define VMTS Custom Property Editors for editing the values
of the properties visually. The main goal of this feature is to handle special
attributes, such as file saving, or code editing. These custom editors can be used
for example to offer dropdown list and to force the users to select one of the listed
elements. VPF has several built-in editors for the attribute types used most often.

4 Organization

4.1 Modeling Aspects

The most crucial part of a modeling framework is the organization of the models.
Requirements such as supporting model aspects and multiple views of the same
elements need flexibility in the diagram structure (e.g. a class diagram must be
divided into namespaces and packages). In VPF, canvases can be defined for the
models, which display a part of the system, typically, an aspect of the model. Each
model can have multiple canvases. Since a canvas can be considered as an aspect
or a view of the model, it is a natural requirement that a model element can appear
on more than one canvas, possibly with different visualization properties such as
line color. The framework supports multiple presentation and customized
visualization of the model elements. Furthermore, it synchronizes the same
elements on different canvases. The synchronization is necessary, since the
simultaneous presentation of different canvases can require an automatic update of
the common properties on every canvas. For example, if the name of the class
changes in a class diagram on the canvas representing the business aspect, then the
name should be updated automatically in the other aspects (e.g. in the resource
aspect).

To display the model elements, including canvases, VPF uses the Model-View-
Controller design pattern. Applying this approach, the design of the notification
mechanisms is rather straightforward. The Model stores all the canvas-
independent data, the Controller is responsible for the event handling, and the
View for the visualization. The canvas-dependent (visualization) information is

stored in the View. For each model element there is only one Model, but a
Controller, and a View is created for each Canvas that contains the model element.
As it is usually the case with MVC pattern, the classes have reference to each
other, for instance, the Controller can easily obtain a reference to the View
element that belongs to the same Canvas.

VPF offers not only extensibility and interfaces through the MVC architecture, but
also built-in features and services that are used frequently in the visualization of a
model element (e.g. resizing, relocation or docking). To offer these services, the
framework contains generic base classes (BaseModel, BaseView, BaseController)
for the MVC architecture. On developing a plugin, one needs to derive a class
form each of these classes (e.g. NodeModel, NodeView, and NodeController for
handling nodes in a graph plugin), and define the customized behavior of their
model-elements only (e.g. appearance), because the general functionalities are
implemented in the base classes. To provide more common features, the shape and
line classes are separated according to the type (node or edge) of the model
element. The previously mentioned Node classes should be inherited from the
Shape classes (e.g. NodeModel from ShapeModel). The following features are
implemented in these classes: creation, automatic saving and loading; containment
with drag and drop support, event handling, drawing, and helper properties for
accessing the visualization information (e.g. the line style).

4.2 Hierarchy

There are several model types that require containment with drag and drop support
between the elements, such as statechart diagrams, hence the framework should
support the containment of model elements. The containment is handled only
between nodes; the edges cannot contain other model-elements. Containment
relations are defined in the metamodel by SystemContainment edges. The
elements in the same container are ordered, similarly to the windows of the
applications in a graphical window system. Obviously, the order can be changed
by the users during editing the diagrams. In the containment hierarchy, each model
element must have exactly one container. This uniqueness is necessary, because
the further model-processing algorithms (e.g. traversing model processors, code
generators) are much simpler, and faster if this condition succeeds. Therefore,
VPF defines a containment chain between the Model objects. There are two
variables in each model object that supply the connection between the elements of
the hierarchy. Children is a list with the contained model elements, and Container
holds a reference to the parent element. These two properties facilitate the simple
navigation in the containment hierarchy. The list of the children is an ordered list;
the position in the list is used for the hierarchical and visual ordering.

Although the containment hierarchy defined by the metamodel is more or less
straightforward, this issue needs additional mechanism, when several views and

change of the order are considered. Since the model elements on the canvas
depend only on the user, i.e. which elements are placed on a canvas by using the
drag and drop functions. Fig. 5 shows an example. Fig. 5a represents the
simplified steps of a phone call. Major steps are focused, minor steps are hidden.
Fig. 5b shows the details of the Dialing state (darker color). In the first case the
container of the Dialing state is the Active state, but in second case the canvas is
the container. Moreover, these hierarchies are compatible with the hierarchy
defined in the metamodel, but not necessary identical.

Figure 5

Different hierarchies

On the one hand the concept of the unique container should be maintained. On the
other hand a model element can have different containers on different canvases.
The hierarchy defined by the metamodel is followed by the hierarchy of the Model
components. However, the actual order on a canvas must be recorded in either of
the canvas-dependent components. Since this hierarchy is closely related to the
event handling mechanism, which is the responsibility of the Controller, a
Controller-based hierarchy is established along with the Model-based hierarchy.
With this solution, the real topology and the visualization have successfully been
separated, only one problem remains to be solved, namely, how the different
hierarchies affect each other. If the user is about to change the Controller-based
hierarchy, such that it is not compatible with the model hierarchy any more, then
the following steps are performed. (i) The Model-based hierarchy is checked
whether it can be made compatible with the new structure (the model element was
placed in a container which can be its parent according to the metamodel). (ii) If
the metamodel permits, then the framework checks whether the Controller can
affect the Model-based hierarchy. The validation is based on a property of the
Controller. (iii) The drag and drop operation is completed. If the Controller is a
reference controller, then the Controller- and Model-based hierarchy-, otherwise
only the Controller-based hierarchy is changed. (iv) Finally, other canvases are
notified.

VPF visualizes the different hierarchies in two tree controls (Fig. 3a). The Model-
based tree control provides a precise representation of the model repository. The
other tree control is called Visualization Tree View. It presents the Controller-
based hierarchies, and contains all visualization data. The tree controls are always
synchronized with the canvases.

5 Event-handling and Persistance

5.1 Event-handling

VPF handles the events using the Chain of Responsibility design pattern along the
Controller-based hierarchy. The canvas (that is the top of the Controller-based
container chain) always encompasses a form class from the programming
environment that is the actual entry point of the events. If a control contains
elements, it forwards the event to its children with the depth-first-search
algorithm. If a container and the contained item both can handle the event, then it
is handled by the contained item.

The behavioral commonalities (between the class and the event-handling
structure) allow VPF to provide implementation for the behavior of the model
elements. The Controller objects in the framework have an attribute State that can
change according to the user actions. The event-handling and the visualization
mechanisms are based on this attribute (e.g. the selected items should display a
selection border). VPF supports events for common drag and drop, mouse, and
drawing events and for containment-, and attribute changing. The notification
strategy is based on delegates (method references). If an event occurs, each
subscribed object receives a message and can react to the event.

VPF realizes the undo and redo operations also by combining the Memento and
Command design patterns [3]. The common basis for the commands makes it
possible to create two stacks for them: an UndoStack and a RedoStack. If the undo
action is processed, the last action is popped from the UndoStack and pushed into
the RedoStack.

5.2 Persistance

VPF uses the Model-based containment hierarchy for saving the model elements.
First the model itself is saved, then the canvases. The model elements are saved
using a depth-first search. The Model-based containment information is stored in
the graph representation. The Controller-based data is stored as visualization
information. We defined an attribute called ZOrder for storing the ordering
information. VMTS separates the visualization information from attributes defined
by the metamodels, but stores both of them in the labels of the model graph.

The loading algorithm also uses the containment chain. First, the model is loaded
then the canvases. Loading the model elements is performed in several steps. (i)
Nodes are loaded (using depth-first-search), (ii) the Model-based containment is
restored for nodes. (iii) Edges are loaded, and (iv) the Model-based containment is

restored for edges. (v) Finally, Controller-based containment hierarchies are
restored for each model-element: both edges and nodes.

6 Related Work

The Generic Modeling Environment (GME) [4] is a highly configurable
metamodeling tool supporting two layers: a metamodel-, and a modeling layer.
GME uses a plugin-based architecture. Plugins can be defined using a COM
interface. In GME the basis of the modeling is the modeling paradigm. Model
paradigms act as the metamodel for the particular domain specific language. GME
is a graphical metamodeling environment that supports the basic requirements for
editing metamodels. Moreover, it can be used only for modeling with the MOF-
based metamodeling hierarchy (it does not support n-layer metamodeling, like
VMTS does). GME is the metamodeling tool from which VMTS has borrowed its
base concepts.

Eclipse [5] is possibly the most popular, highly flexible, open source modeling
platform that supports metamodeling. Eclipse is based on plugins, that grants the
required flexibility. Eclipse Modeling Framework (EMF) can generate source
code from models defined using the Class Diagram definition of UML. EMF
definitions contain the abstract syntax (the metamodel) only, the concrete syntax
(the visualization) cannot be defined this way. The generated code contains base
classes for editing the models, but the appearance is not customized. Graphical
Editing Framework (GEF) is a part of the Eclipse project that provides methods
for creating visual editors. EMF does not support code generation for GEF.
Graphical Modeling Framework (GMF) is a new Eclipse project that is under
validation. The goal of GMF is to form a generative bridge between EMF and
GEF, whereby a diagram definition will be linked to a domain model as input to
the generation of a visual editor.

The GenGed (Generation of Graphical Environments for Design) [6] environment
is suitable for creating visual language definitions. It is rather presentation
oriented: instead of metamodeling, it specifies graphical symbols, constraints and
their connections; from this information, graph rewriting rules (Alphabet Rules)
are generated, which serve as the graph grammar used to parse the visual
language. GenGed uses AGG [6] as the internal graph transformation engine. For
the editing features, a graphical editor is also generated to support the newly
created visual languages. Transformation-Based Generation of Modeling
Environments (TIGER) [7] is the successor of GenGed. It uses precise visual
language (VL) definitions and offers a graphical environment based on GEF.

JKOGGE [8] is a tool for generating CASE tools. The tools built with JKOGGE
consist of three parts: a base system, components, and documents. Documents are

represented as distributed graphs. Components are realized with plugins that
perform a well-defined task, e.g. editors.

Another framework is the Diagram Editor Generator (DiaGen) [9] that uses its
own specification language for defining diagrams. The specification is checked
and structurally analyzed using hypergraph transformations and grammars.

MetaEdit+ [10] offers a tool suite for defining a domain-specific modeling
language with CASE support. The tool offers a full CASE support for the defined
language, allowing developers to model using concepts that represent the product
domain. MetaEdit+ allows viewing the design data in diagrams, tables and
matrices. It offers an API for accessing components and enhances debugging.

Conclusions

The main ideas and design decisions of the VPF were presented in this paper. The
metamodel-based static structure of the toolbar, tree view and attribute panel
facilitates the general operation for an arbitrary model without further
customization. The plugin architecture enables the metamodel-based
customization of the models. The framework offers base classes that cover the
most common tasks. A set of model elements can have many views; the different
views of the same model elements are synchronized automatically. Two types of
containment hierarchy are handled to support both the metamodel-defined, and the
visualization containments. The hierarchies are synchronized to avoid
inconsistency. The Model-based hierarchy is used in serialization, while the
Controller-based hierarchy is the basis for the event handling mechanisms. The
framework provides functionalities for internal state handling and event
refinement. More detailed information on VPF can be found in [1].

Future work includes devaloping a domain specific modeling language, which
expresses the information required by a plugin, along with the necessary
generator.

References

[1] Visual Modeling and Transformation System
http://avalon.aut.bme.hu/~tihamer/research/vmts

[2] Meta- Object Facility (MOF™), version 1.4, http://www.omg.org

[3] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley Professional
Computing Series

[4] Lédeczi Á, Bakay Á, Maróti M, Vőlgyesi P, Nordstrom G, Sprinkle J,
Karsai G: Composing Domain-Specific Design Environments, IEEE
Computer 34(11), November, 2001, pp. 44-51

[5] Graphical Editing Framework, http://www.eclipse.org/gef/

[6] Taentzer G: AGG: A Graph Transformation Environment for Modeling
and Validation of Software, In J. Pfaltz, M. Nagl, and B. Boehlen (eds.),
Application of Graph Transformations with Industrial Relevance
(AGTIVE'03), volume 3062, Springer LNCS, 200

[7] Erhig, K., Ermel, C., Hansgen, S., Taentzer, G.: Generation of Visual
Editors as Eclipse Plug-Ins, http://www.tfs.cs.tu-berlin.de/~tigerprj/papers/

[8] JKOGGE
http://www.uni-koblenz.de/FB4/Institutes/IST/AGEbert/Projects/MetaCase

[9] Minas M.: Specifying Graph-like diagrams with DIAGEN, Science of
Computer Programming 44:157–180, 2002

[10] MetaEdit+, http://www.metacase.com/

