
Speed Increasing by Structural Optimalization,
at RISC Processors

Péter Pálfy 1, Timót Hidvégi 2
Széchenyi István University, Egyetem tér 1, H-9026 Győr, Hungary, www.sze.hu
1 iplan@freemail.hu
2 hidvegi@sze.hu

1 Introduction
Increasing speed of data processing at microprocessor structures is a very complex
question. At most of the developments, the main directive is to speed up our
systems by the acceleration of architectural elements as individuals, at the deepest
elementary levels, which is possible. My main interests are improving systems by
only system level optimalizations, without speeding up our elements. In this work
I would like to show some alternative solutions, which can increase speed at a
microprocessor[1], [3], in our case at a microcontroller.
The slogan of this topic could be: „ Parallelization at Different Levels”.

1.1 The Ways of Alternatives (Alternative Speeding up
Techniques)

• Transforming the internal bus system, to increase the „work content of one
instruction”.

• Give self intelligence to single elements

• Equalizing system delays, by low level system optimalizations, beside
speeding up at

• different elements at the lowest level.

• As an issue of the previous points, one cycle instruction performing – no
pipeline required

• Instruction-controlling by direct controller bits – Wide program words.

• Speeding up by multiplicating elements, not the whole processor.

• Element multiplications, optimalized work distributing between elements.

Some of these solutions can be used by itself, or combinated at different ways. In
the followings some elements of an optimalized combination will be seen, as a
simple microcontroller structure.

2 Our Experimental Device
We perform experiments about implementing some alternative methods. In this
work our device is a FPGA [4], [5] – a special configurable / programmable
hardware device – it is for example a Spartan-II E. It contains Complex Logic
Blocks, which are programmable logical circuits, some RAM-memory, and
configurable I/O ports.

2.1 Characteristics of our Device (XC2S800)
Number of logic cells: 15552

CLB array: 48 x 72

Maximum available I/O-s: 514

Available system gates: 600,000

Block Ram: 288kBit

2.2 Internal Structure of Spartan FPGA

2.2.1 Location of the Architectural Elements in the Device

This Figure 1 shows the locations of the internal logic blocks (CLB-s) [6], [7], [8].

Figure 1
Basic Spartan-II FPGA

2.2.2 Connecting the CLB-s

Figure 2

Buffer Connections between the CLBs

The Figure 2 is about the connections of the CLB-s. They are connected to each
other by tri state buffers. The assembler and optimalizator software determines
these connections, and configure these cells, based on a source program.

2.2.3 CLB from Inside

Figure 3

Logical Units in CLBs

As it can be seen in the Figure 3, a CLB contains 2 Slices, which contain 2 LUT-s
(Logical Units). The assembler can select one of four logical functions by
multiplexers.

3 Bit High Speed Microcontroller Structure

3.1 An Alternative RISC Microprocessor

Figure 4

Architecture Block Schema

Download &
Upload line

Program
Memory

Download
Control

ADR
DEC

PC
 .

Disable
Instructions

JUMP & IT
Controlling

 16

A
D
R
E
S
S

B
U
S

D
A
T
A

M
E
M
O
R
Y

 41 16

 ADRESS BUS
 CONTROLS

Literal
Register

DATA
BUSES

3x8

STACK
MEMORY

PARALELL ALU

ACC, Shift regs.

S
T
A
T
U
S

PORTS

 PA PB PC

Timer0

Timer1

IT logic
&

Config

Link
to
PC

The Figure 4 shows an alternative of structural speed increasing. The grey boxes
are the most important elements of reorganizing. These elements are the 3 bus data
foam system, and the separated address bus. The other elements of the
optimalization are the intelligent memory, the parallel ALU, and the special
controller Unit. Beside these extras, the solution contains 2 programmable timers,
and a programmable IT system. Each bits of port B can be used as an IT, and the
both of the timers can produce a kind of „overload” IT. Status IT is available too,
for example when it is necessary to assign an it for the overload in the data
operation.

3.2 Speed up Solutions

3.2.1 Strengths of the 3 Bus Data Foam

The main power of this architecture is in the one cycle instruction performing.

Figure 5

Performing Operations with Three Data Bus

The words, which can describe the work of this system well are data guiding. By
the program words, two source, the destination device, and the operation must be
selected. As an issue of this structure, the two steps of performing are associated
with clock edges. These steps are reading rom source and writing into destination.
The longest system delay in this controller is the ALU-delay, it determines the
maximum system clock frequency. By this method, actually as fast device is
available to built, as well the developer can optimalize the ALU-speed. As the
result of this structure reorganizing, the system requires special instructions and
special assembly, and of course a special assembler.

SOURCE1 SOURCE2

PARALELL ALU

 BUS 1

 BUS 2

 BUS Q

DESTINATION

3.2.2 Instruction Set

3.2.2.1 The Components of a General Instruction

DATA INSTRUCTION → SOURCE1,SOURCE2,DESTINATION → #ADRESS
INSTRUCTION → ADRESS

In the same instruction line, the operation can be performed, and taken into the
destination device. Beside this, a memory rack can be addressed, or it is available
to write an address of a program word into the appropriate address register, in the
same line – because of the separated address bus. The other advantage of this
system is, that the number of the move instructions is minimal, so beside the large
information content of the program words, it is available to spare time by omitting
to use move instructions. Of course the move instruction is usable if it is
necessary.

3.2.2.2 Some Example for „How to Use

0029H ADD SR,PORTC,ACC #RDM 20H
0030H AND ACC,PORTA,PORTC#LWR 10010100B
0031H ADD ACC,L,PORTA #JWR 34H
0032H JMPIF MI #JWR 32H
0033H JMP #JWR 34H

This routine shows us a memory reading. If a memory read is required, an #RDM
instruction must be used in the address line. In this example, the delay of the
intelligent memory is less than three instruction cycles. In this case three
instructions can be inserted into the source program, before the memory result is
accessible. In the reading of the memory read register, the MI-bit (Memory Is
ready), is at „high”, when the asked data is available to read.

3.2.2.3 The DATA Instructions

Arithmetic1 ADD S1,S2,D Adds the two source, and store in dest.
Arithmetic2 SUB S1,S2,D Subtracts S2 from S1, and store in dest.
Logic1 AND S1,S2,D AND logic between the bits of the two operand.
Logic2 OR S1,S2,D OR logic between the bits of the two operand.
Logic3 XOR S1,S2,D XOR logic between the bits of the two operand.
Logic4 NOR S1,S2,D NOR logic between the bits of the two operand.
Logic5 NAND S1,S2,D NAND logic between the bits of the two

operand.
Logic6 NXOR S1,S2,D NXOR logic between the bits of the two

operand.

Logic7 -AND S1,S2,D 21 SS • logic between the bits of the two
operand.

Logic8 AND- S1,S2,D 21 SS • logic between the bits of the two
operand.

Logic9 -OR S1,S2,D 21 SS + logic between the bits of the two
operand.

Logic10 OR- S1,S2,D 21 SS + logic between the bits of the two
operand.

Logic11 INV S1,D Put the inverted of S1 into destination.
Logic12 INV S2,D Put the inverted of S2 into destination.
Logic13 MOV S1,D Moving S1 to destination.
Logic14 MOV S2,D Moving S2 to destination.
Logic15 FF D Set the all bits of destination.
Logic16 CLR D Clear the all bits of dest.
Shift1 SR S1 Shifting S1 right, without Carry
Shift2 SL S2 Shifting S2 left, without Carry
Shift3 Operation S1, S2, SR Shift result right with Carry
Shift4 Operation S1, S2, SL Shift result left with Carry

3.2.2.4 Address Bus Instructions

#MWR address Write into data memory
#MRD address Read from data memory
#JWR address Give a jump address
#IWR address Give an IT address
#LWR konst Write into Literal register
#NOADR No address

3.2.2.5 System Instructions

SCLK Stop program counting, address operation is prohibited (Sleep-kind).

It’s similar as the sleep operation in other controllers, but we can set a direct
operation, if it is active.

In this case, the processor behaves as a simple combinational network.

3.2.3 The Configurable IT Logic

3.2.3.1 Description and Block Schema

With this logic, the bits of portB are defined as interrupt inputs, and beside this the
status bits can be used as internal interrupt bits.

Figure 6

Interrupt Logic and the Config-Registers

3.2.3.1 An Example of Configuring

Configure the IT logic across Bus Q in 3 steps:

Operation #LWR KONST1

MOV L, IE1 #LWR KONST2

MOV L, IL #LWR KONST3

CLR IE2 #Address

The KONST values are the bit samples, these bits determine that the given IT is
enabled or not.

 8

IntEn1 IntEn2 IntEn2
(Port B) (Status) (T0,T1)

IT Logic

IntLev
(PortB) T0I T1I Status

Port B

 8 BUS Q

ITE

 6 2

 BUS Q

3.2.3.2 The Equations of the IT Logic Box

....26...200...)77(17............)00(10 IETOIIESBILIEBILIEITE •++•++⊕•++⊕•=
Describing with a paralell, minterm form:

+••+••++••+••= 77177717.......00100010 BILIEBILIEBILEBILIEITE
....26...200 IETOIIES •++•+

It is available to optimize it easily at transistor level too, but in our experiments, it
is optimalized at gate level, because of the characteristics of the FPGA-s.

3.2.4 The Configurable Timer and Counter Modules

3.2.4.1 Block Schema and Description

This module is configurable similar as the previous one, here there are three
configuration-registers. The two limiter register contains a number, which limits
the counting our timing. If the counted number is greater or equal with the given
TCL register, the system sends an it for the IT-logic.

Figure 7

Configuring Registers in the Counter

TC Limit
Register1

TC Limit
Register2

Timer / Counter
Modul 1

Timer / Counter
Modul 2

Condition
Check >=

Condition
Check >=

 T0I T1I

BUS Q 8

BUS Q

 T0 T1
OE OE

TSR1 TSR0

 MUX

 MUX

Port C

INT CLK INT CLK

X0

X1

CCT Register

 X0 X1

WRCC

S1 S2

The functions of the CCT register bits:

 CC0(x0): Set Timer1 mode (timing/counting)

 CC1(x1): Set Timer2 mode (timing/counting)

 CC2-CC4 Select a BUS Q bit to count by Timer1.

 CC5-CC7 Select a direct PortC bit to count by Timer2.

By TCM1, one of the bits of Bus Q is available to count, by TCM2 bit of PortC
directly. The second case is an intelligent counting function, the processor doesn’t
lose time because of counting. The status of the modules can be read, at the
suitable source bus, if it’s necessary to perform operations with the counted
number.

3.2.4.2 The Equalities of Condition Check

Bit transmission:

NNNNNN TCLTCMTCLTCMITIT •++•= −)(00 1
Full logic:

()
()
()

7777

6666

5555

444

3333

2222

1111

00

)(

)(

)(

4)(

)(0 TCLTCMTCLTCM

TCLTCMTCLTCM

TCLTCMTCLTCM

TCLTCMTCLTCM

TCLTCMTCLTCM

TCLTCMTCLTCM

TCLTCMTCLTCM

TCLTCM

IT •++•

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

•++•

•

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

•++•

•

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

•++•

•

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

•++•

•

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

•++•

•⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

•++•

+

=

The simple parallelization results too long forms, but by CMOS FET-s [2] with
enough low saturation voltage, a low delay transistor logic is available to build
much more easier.

Conclusions

Characteristics of this microcontroller solution:

Number of the program words: 65536 Rack

Program word width: 60 Bits

Size of program memory 480 kByte

Size of data memory (with 480k program memory) 64 or 32 kByte

Valuations/Comparisons:

Advantages:

- High speed of operation performing

- High operational content in one program word

- Parallelity, parallel instruction performing

- Independent, Configurable devices

Disadvantages:

- Long Program words

- Requires special Assembler and optimalizator software

- Complicated structure

Summary:

It can be seen, that by a structural reorganization it is possible to gain speed, at the
expense of the growth of our program memory. With using this method, by the
multiplication of the elements, more speed growth is reachable.

References

[1] Reto Zimmermann, “Computer Arithmetic: Principles, Architectures and
VLSI Design”, Integrated Systems Laboratory Swiss Federal Institute of
Technology, 1998

[2] Ricardo Reis, Jochen A. G. Jess, “Design of System on a Chip, Devices &
Components”, Kluwer Academic Publishers, 2004

[3] Enoch O. Hwang, “Microprocessor Design, Principles and Practices with
VHDL”, Integrated Systems Laboratory Swiss Federal Institute of
Technology, 2004

[4] Bob Zeidman, “An Introduction to FPGA Design”, Embedded System
Conference 1999

[5] Jan Gray, “Building a RISC System in an FPGA”, Circuit Cellar, The
Magazine for Computer Applications, March, 2000

[6] www.xilinx.com

[7] www.microchip.com

[8] www.xess.com

