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1 Introduction 
Increasing speed of data processing at microprocessor structures is a very complex 
question. At most of the developments, the main directive is to speed up our 
systems by the acceleration of architectural elements as individuals, at the deepest 
elementary levels, which is possible. My main interests are improving systems by 
only system level optimalizations, without speeding up our elements. In this work 
I would like to show some alternative solutions, which can increase speed at a 
microprocessor[1], [3], in our case at a microcontroller. 
The slogan of this topic could be: „ Parallelization at Different Levels”. 

1.1 The Ways of Alternatives (Alternative Speeding up 
Techniques) 

• Transforming the internal bus system, to increase the „work content of one 
instruction”. 

• Give self intelligence to single elements 

• Equalizing system delays, by low level system optimalizations, beside 
speeding up at  

• different elements at the lowest level. 

• As an issue of the previous points, one cycle instruction performing – no 
pipeline required 

• Instruction-controlling by direct controller bits – Wide program words. 

• Speeding up by multiplicating elements, not the whole processor. 

• Element multiplications, optimalized work distributing between elements. 

Some of these solutions can be used by itself, or combinated at different ways. In 
the followings some elements of an optimalized combination will be seen, as a 
simple microcontroller structure. 



2 Our Experimental Device 
We perform experiments about implementing some alternative methods. In this 
work our device is a FPGA [4], [5] – a special configurable / programmable 
hardware device – it is for example a Spartan-II E. It contains Complex Logic 
Blocks, which are programmable logical circuits, some RAM-memory, and 
configurable I/O ports. 

2.1 Characteristics of our Device (XC2S800) 
Number of logic cells:  15552 

CLB array: 48 x 72 

Maximum available I/O-s: 514 

Available system gates: 600,000 

Block Ram: 288kBit 

2.2 Internal Structure of Spartan FPGA 

2.2.1 Location of the Architectural Elements in the Device 

This Figure 1 shows the locations of the internal logic blocks (CLB-s) [6], [7], [8]. 

Figure 1 
Basic Spartan-II FPGA 

 



2.2.2 Connecting the CLB-s 

 
Figure 2 

Buffer Connections between the CLBs 

The Figure 2 is about the connections of the CLB-s. They are connected to each 
other by tri state buffers. The assembler and optimalizator software determines 
these connections, and configure these cells, based on a source program. 

2.2.3 CLB from Inside 

 
Figure 3 

Logical Units in CLBs 

As it can be seen in the Figure 3, a CLB contains 2 Slices, which contain 2 LUT-s 
(Logical Units). The assembler can select one of four logical functions by 
multiplexers. 



3 Bit High Speed Microcontroller Structure 

3.1 An Alternative RISC Microprocessor 

 
Figure 4 
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The Figure 4 shows an alternative of structural speed increasing. The grey boxes 
are the most important elements of reorganizing. These elements are the 3 bus data 
foam system, and the separated address bus. The other elements of the 
optimalization are the intelligent memory, the parallel ALU, and the special 
controller Unit. Beside these extras, the solution contains 2 programmable timers, 
and a programmable IT system. Each bits of port B can be used as an IT, and the 
both of the timers can produce a kind of „overload” IT. Status IT is available too, 
for example when it is necessary to assign an it for the overload in the data 
operation. 

3.2 Speed up Solutions 

3.2.1 Strengths of the 3 Bus Data Foam 

The main power of this architecture is in the one cycle instruction performing. 

 
Figure 5 

Performing Operations with Three Data Bus 

The words, which can describe the work of this system well are data guiding. By 
the program words, two source, the destination device, and the operation must be 
selected. As an issue of this structure, the two steps of performing are associated 
with clock edges. These steps are reading rom source and writing into destination. 
The longest system delay in this controller is the ALU-delay, it determines the 
maximum system clock frequency. By this method, actually as fast device is 
available to built, as well the developer can optimalize the ALU-speed. As the 
result of this structure reorganizing, the system requires special instructions and 
special assembly, and of course a special assembler. 
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3.2.2 Instruction Set 

3.2.2.1 The Components of a General Instruction 

DATA INSTRUCTION → SOURCE1,SOURCE2,DESTINATION → #ADRESS 
INSTRUCTION → ADRESS 

In the same instruction line, the operation can be performed, and taken into the 
destination device. Beside this, a memory rack can be addressed, or it is available 
to write an address of a program word into the appropriate address register, in the 
same line – because of the separated address bus. The other advantage of this 
system is, that the number of the move instructions is minimal, so beside the large 
information content of the program words, it is available to spare time by omitting 
to use move instructions. Of course the move instruction is usable if it is 
necessary. 

3.2.2.2 Some Example for „How to Use 

0029H  ADD SR,PORTC,ACC  #RDM  20H 
0030H  AND ACC,PORTA,PORTC#LWR 10010100B 
0031H  ADD ACC,L,PORTA #JWR  34H 
0032H  JMPIF MI #JWR 32H 
0033H  JMP                                     #JWR 34H 

This routine shows us a memory reading. If a memory read is required, an #RDM 
instruction must be used in the address line. In this example, the delay of the 
intelligent memory is less than three instruction cycles. In this case three 
instructions can be inserted into the source program, before the memory result is 
accessible. In the reading of the memory read register, the MI-bit (Memory Is 
ready), is at „high”, when the asked data is available to read. 

3.2.2.3 The DATA Instructions 

Arithmetic1 ADD S1,S2,D Adds the two source, and store in dest. 
Arithmetic2 SUB S1,S2,D Subtracts S2 from S1, and store in dest. 
Logic1 AND S1,S2,D AND logic between the bits of the two operand. 
Logic2 OR S1,S2,D OR logic between the bits of the two operand. 
Logic3 XOR S1,S2,D XOR logic between the bits of the two operand. 
Logic4 NOR S1,S2,D NOR logic between the bits of the two operand. 
Logic5 NAND S1,S2,D NAND logic between the bits of the two 

operand. 
Logic6 NXOR S1,S2,D NXOR logic between the bits of the two 

operand. 



Logic7 -AND S1,S2,D 21 SS •  logic between the bits of the two 
operand. 

Logic8 AND- S1,S2,D 21 SS •  logic between the bits of the two 
operand. 

Logic9 -OR S1,S2,D 21 SS + logic between the bits of the two 
operand. 

Logic10 OR- S1,S2,D 21 SS +  logic between the bits of the two 
operand. 

Logic11 INV S1,D Put the inverted of S1 into destination. 
Logic12 INV S2,D Put the inverted of S2 into destination. 
Logic13 MOV S1,D Moving S1 to destination. 
Logic14 MOV S2,D Moving S2 to destination. 
Logic15 FF D Set the all bits of destination. 
Logic16 CLR D Clear the all bits of dest. 
Shift1 SR S1 Shifting S1 right, without Carry 
Shift2 SL S2 Shifting S2 left, without Carry 
Shift3 Operation S1, S2, SR Shift result right with Carry 
Shift4 Operation S1, S2, SL Shift result left with Carry 

3.2.2.4 Address Bus Instructions 

#MWR  address    Write into data memory 
#MRD  address    Read from data memory 
#JWR  address    Give a jump address 
#IWR  address    Give an IT address 
#LWR  konst    Write into Literal register 
#NOADR     No address 

3.2.2.5 System Instructions 

SCLK Stop program counting, address operation is prohibited (Sleep-kind). 

It’s similar as the sleep operation in other controllers, but we can set a direct 
operation, if it is active. 

In this case, the processor behaves as a simple combinational network. 



3.2.3 The Configurable IT Logic 

3.2.3.1 Description and Block Schema 

With this logic, the bits of portB are defined as interrupt inputs, and beside this the 
status bits can be used as internal interrupt bits. 

 
Figure 6 

Interrupt Logic and the Config-Registers 
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3.2.3.2 The Equations of the IT Logic Box 

....26...200...)77(17............)00(10 IETOIIESBILIEBILIEITE •++•++⊕•++⊕•=
Describing with a paralell, minterm form: 

+••+••++••+••= 77177717.......00100010 BILIEBILIEBILEBILIEITE  
....26...200 IETOIIES •++•+  

It is available to optimize it easily at transistor level too, but in our experiments, it 
is optimalized at gate level, because of the characteristics of the FPGA-s. 

3.2.4 The Configurable Timer and Counter Modules 

3.2.4.1 Block Schema and Description 

This module is configurable similar as the previous one, here there are three 
configuration-registers. The two limiter register contains a number, which limits 
the counting our timing. If the counted number is greater or equal with the given 
TCL register, the system sends an it for the IT-logic. 
 

 
Figure 7 

Configuring Registers in the Counter 
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The functions of the CCT register bits: 

 CC0(x0): Set Timer1 mode (timing/counting) 

 CC1(x1): Set Timer2 mode (timing/counting) 

 CC2-CC4 Select a BUS Q bit to count by Timer1. 

 CC5-CC7 Select a direct PortC bit to count by Timer2. 

By TCM1, one of the bits of Bus Q is available to count, by TCM2 bit of PortC 
directly. The second case is an intelligent counting function, the processor doesn’t 
lose time because of counting. The status of the modules can be read, at the 
suitable source bus, if it’s necessary to perform operations with the counted 
number. 

3.2.4.2 The Equalities of Condition Check 

Bit transmission: 
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The simple parallelization results too long forms, but by CMOS FET-s [2] with 
enough low saturation voltage, a low delay transistor logic is available to build 
much more easier. 

Conclusions 

Characteristics of this microcontroller solution: 

Number of the program words:                                       65536   Rack 

Program word width:                                             60   Bits 

Size of program memory                                           480  kByte 

Size of data memory (with 480k program memory)     64 or 32  kByte 

Valuations/Comparisons: 



Advantages: 

- High speed of operation performing 

- High operational content in one program word 

- Parallelity, parallel instruction performing 

- Independent, Configurable devices 

Disadvantages: 

- Long Program words 

- Requires special Assembler and optimalizator software 

- Complicated structure 

Summary: 

It can be seen, that by a structural reorganization it is possible to gain speed, at the 
expense of the growth of our program memory. With using this method, by the 
multiplication of the elements, more speed growth is reachable. 
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