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Abstract— The Tensor Product (TP) model transformation is a recently pegptechnique
for transforming given Linear Parameter Varying (LPV) models intinafmodel form,
namely, to parameter varying convex combination of Linear Time Inmtarl) models.
The main advantage of the TP model transformation is that the Linear Magguality
(LMI) based control design frameworks can immediately be applied toethalting affine
models to yield controllers with tractable and guaranteed performanaeefféctiveness of
the LMI design depends on the LTI models of the convex combinationteftre, the main
objective of this paper is to study how the TP model transformation is teypélletermin-
ing different types of convex hulls of the LTI models and how the optinzaderoff between
the model’'s accuracy and the computational cost can be determinedtddy is conducted
trough the example of a translational electromechanical system, the Siegiilum Gantry
(SPG).

1 Introduction

The affine model form is a dynamic model representation wimre LMI based

control design technigues can immediately be executed edtribes given LPV
models by a parameter varying convex combination of LTI niead€he TP model

form is a kind of affine decomposition, where the convex coration is defined by
one variable weighting functions of each parameter seglgraConvex optimiza-

tion or linear matrix inequality based control design teghes can immediately be
applied to affine, hence to TP models [5, 6, 9]. An importantaadiage of the TP
model representation is that the convex hull defined by tHemddels can readily
be modified and analyzed via the one variable weighting fanst Furthermore,
the feasibility of the LMI's can be considerably relaxed bgdifying the type of

the resulting convex hull.

The TP model transformation is a recently proposed nunlerie¢hod to trans-
form LPV models into TP model form [3,4]. It is capable of tséorming different
LPV model representations (such as physical model givenniayytic equations,
fuzzy, neural network, genetic algorithm based modelg) T model form in a
uniform way. In this sense it replaces the analytical déiove and affine decom-



positions (that could be a very complex or even an unsolvasle). Execution of

the TP model transformation takes a few minutes by a reguwesddal Computer.
The TP model transformation minimizes the number of the Idrhponents of the

resulting TP model. Furthermore, the TP model transfomwnat capable of result-
ing different types of convex hulls of the given LPV modeldagive the option to

the user to define the trade-off between the model’'s appiatiam accuracy and the
computational costs.

In this paper we study how the TP model transformation isiegple to gen-
erate different types of convex hulls of the given LPV modeldifferent trade-off
situations. The study is conducted through the example cdreskational electro-
mechanical system, the Single Pendulum Gantry (SPG).

2 Preliminaries

2.1 Linear Parameter-Varying state-space model

Consider the following parameter-varying state-spaceehod
X(t) = A(p(t)x(t) +B(p(t))ut), 1)
y(®) = C(p(t))x(t) +D(p®)u(t),

with inputu(t), outputy(t) and state vectox(t). The system matrix

APD) BEDL) . o
S(p“”:(cma» D(p(t)))ERo' @

is a parameter-varying object, whepét) € Q is time varyingN-dimensional pa-
rameter vector, and is an element of the closed hyperubefa;, bi] x [ap, by] x
-+ x [an,bn] € RN. p(t) can also include some elementsxdf).

2.2 Convex state-space TP model

S(p(t)) can be approximated for any parameget) as the convex combination
of LTI system matrices;, r = 1,...,R. MatricesS; are also calledertex systems
Therefore, one can define weighting function$p(t)) € [0,1] C R such that matrix
S(p(t)) can be expressed as convex combination of system magic&be explicit
form of the TP model in terms of tensor product becomes:

(?8) =5 5, h(p0) (ﬁﬁii) ©)

that is



Here,& symbolizes the approximation error, row vectey(pn) € R"n=1,...,N
contains the one variable weighting functions;,(pn). Functionwy j(pn(t)) €
[0,1] is the j-th one variable weighting function defined on théh dimension of2,
and pn(t) is then-th element of vectop(t). I, (n=1,...,N) is the number of the
weighting functions used in the-th dimension of the parameter vec(t). The

(N + 2)-dimensional tensos € R'1x12xxInxOx1 g constructed from LTI vertex
systemsSi,j,..iy € RO*! For further details we refer to [2—4]. The convex combi-
nation of the LTI vertex systems is ensured by the conditions

Definition 1 The TP model (3) is convex if:

vn e [1,N],i, pn(t) : Wni(pn(t)) € [0,1]; 4)

In
vne [LN], pa(t) : _;Wn,i(pn(t)) =1 )

This simply means th&(p(t)) is within the convex hull of the LTI vertex sys-
temsS;,. iy for anyp(t) € Q.

S(p(t)) has a finite element TP model representation in many case(in
(3))- However, exact finite element TP model representatmss not exist in gen-
eral € > 0in (3)), see Ref. [10]. In this cage— 0, when the number of the LTI
systems involved in the TP model goesdo

2.3 TP model transformation

The TP model transformation starts with the given LPV modgbfd results in the
TP model representation (3), where the trade-off betweemtimber of LTI vertex
systems and theis optimized [3]. The TP model transformation offers optida
generate different types of the weighting functiev(s). For instance:

Definition 2 SN - Sum Normalization Vectorw(p), containing weighting functions
w;i(p) is SN if the sum of the weighting functions is 1 for al @.

Definition 3 NN - Non Negativeness Vectorw(p), containing weighting functions
w;i(p) is NN if the value of the weighting functions is not negatoreafl p € Q.

Definition 4 NO - Normality Vectorw(p), containing weighting functions;yp) is

NO if itis SN and NN type, and the maximum values of the weigfitinctions are
one. We say M) is close to NO if it is SN and NN type, and the maximum values
of the weighting functions are close to one.

Definition 5 RNO - Relaxed Normality Vectorw(p), containing weighting func-
tions w(p) is RNO if the maximum values of the weighting functions aFesttme.



Definition 6 INO - Inverted Normality Vectorw(p), containing weighting func-
tions w(p) is INO if the minimum values of the weighting functions are.ze

All the above definitions of the weighting functions detemmdifferent types of
convex hulls of the given LPV model. The SN and NN types gumea(y), namely,
they guarantee the convex hull. The TP model transformagicapable of always
resulting SN and NN type weighting functions. This meang tiree can focus
on applying LMI's developed for convex decompositions omiich considerably
relaxes the further LMI design. The NO type determines a tiginvex hull where
as many of the LTI systems as possible are equal t&thg over somep € Q and
the rest of the LTI's are close ®(p(t)) (in the sense df; norm). The SN, NN and
RNO type guarantee that those LTI vertex systems which arelantical toS(p)
are in the same distance fro&p(t)). INO guarantees that different subsets of the
LTI's defineS(p(t)) over different regions ab € Q.

These different types of convex hulls strongly effect theesfbility of the further
LMI design. For instance paper [1] shows an example wherrméeng NO is use-
ful in the case of controller design while the observer dessgnore advantageous
in the case of INO type weighting functions.

In order to have a direct link between the TP model form andypi&al form
of LMI conditions, we define the following index transforrizat:

Definition 7 (Index transformationl.et

Ar B
S = (C: D:) = S17i2-,~-,iN»

where r= ordering(iy,iz,...,in) (r = 1...R=T]nIn). The function “ordering”
results in the linear index equivalent of an N dimensionahg's index i, io, ..., in,
when the size of the array isk |2 x - - - x Iy. Let the weighting functions be defined
according to the sequence of r:

W (P(1) = [ ] Wnin(Pn(t))-

By the above index transformation one can write the TP m@jeh(the typical
form of:

R
S(p(t)) = > W (p(t))S:-
2"
Note that the LTI system& andS, ;, . i, are the same, only their indices are
modified, therefore the hull defined by the LTI systems is maesin both forms.
3 Case study of the Single Pendulum Gantry

The Single Pendulum Gantry system is used for educatiompbges at University
of Zagreb, Croatia. It is an experimental testbed, and tla¢igdo design, compare



Figure 1: Schematic of the Single Pendulum Gantry model

and evaluate several controller approaches. For morelslatzout the testbed we
refer to [7, 8].

Let us consider the stabilization problem as shown in Fiduréiere we give
only a brief discussion, for detailed description we referf, 8]. Lettingx =
(X1 X2 X3 x4)T =(x X «a d)T, the equations of motion in linear param-
eter-varying state-space form is:

x = f(x)x+g(x)u, (6)
where
0 1 0 0 0
f(x) = 8 AléAx Az{)Ax Aa/le ’ 900 = Bl(/)AX 7 and
0 Ad/Ac As/Ac As/Ax B2/Ax



Table 1: Parameters of the SPG system

Description Parameter Value Units
Equivalent viscous damping coefficient  Begq 54 N ms/rad
Viscous damping coefficient Bp 0.0024 N mgrad
Planetary gearbox efficiency Ng 1 —
Motor efficiency Nm 1 —
Gravitational constant of earth g 9.81 m/s?
Pendulum moment of inertia Ip 0.0078838 kg
Rotor moment of inertia Jm 3.9001e-007 kg rh
Planetary gearbox gear ratio Kg 371 —
Back electro-motive force constant Km 0.0076776 —
Motor torque constant Kt 0.007683 —
Pendulum length from pivot to COG Ip 0.3302 m
Lumped mass of the cart system Mc¢ 1.0731 kg
Pendulum mass Mp 0.23 kg
Motor armature resistance Rm 2.6 Q
Motor pinion radius rmp 0.00635 m

A (Ip+Mpl2) NaKgNmKeKe , o

1 = - T 5 .2 e
p P'p Rmrrzn 0 q
Ay — M3l2gcos(x3)sin(xa)
X3
Ag = (M3I3+1pMplp)sin(xa)Xs + MplpBpcog(x3)
K2nmK:K

—(M¢+Mp)Mplpsin(xa)

As = X
As = —(Mc+Mp)Bp—M3lZcosxs) sin(xs)Xs
Ac = (Mc+Mp)lp+McMpl3+M3IZsin? (x3)
NgKgNmKs
Bl = —(IpMply)?- 2
1 (IpMplp) Refmp
KgNmK

Rmfmp

The parameters of the simulated system are given in Table 1.

3.1 TP model representations of the Single Pendulum Gantry

Observe that the nonlinearity is causedxit) andxu(t). For the TP model trans-
formation we define the transformation space(as- [—a,a) x [—a,a] (x3(t) €
[—a,a) andxa(t) € [—a,a]), wherea = mrad (note that these intervals can be
arbitrarily defined). Let the density of the sampling grid18s x 101. The sam-
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Figure 2: Weighting functions of the TP model 0 on dimensixy{s) andxa(t)

pling results inA?; and Bf;, wherei,j = 1...101. Then we construct the ma-
trix §; = (A; Bs ;), and after that the tensor® € R1OM1014<5 from S5,

we execute HOSVD on the first two dimensionsssfthen we find that the rank
of s on the first two dimensions are 7 and 2 respectively. The &ngalues
are as follows in the dimensiow: 011 = 16094, 01, = 20672, 013 = 12.604,

014 = 10.719,015 = 2.3109,01 ¢ = 0.14075,0, 7 = 0.001854, and in the dimen-
sionxy: 021 = 16227, 022 = 10.965. This means that the SPG system can be
exactly given as convex combination ok = 14 linear vertex models (tHe nu-
merical error of the TP model transformation for exact madééss than 10'2).

The TP model transformation describes SPG system as:

7 2
X(t) = 33 wai(x(6) e, (Xa(t)) (A, X(1) +Byu(t)). ™
a4

In the followings we show that the type of the convex comboratan readily
be modified by the TP model transformation:

TP MODEL 0: The resulting weighting functions depicted on Figure 2 are
directly obtained by the TP model transformation without &amther modification.
They are between-1 and+1 and orthogonal. The resulting LTI vertex systems do
not define the convex hull of the LPV model, but their numbenisimized.

TP MODEL 1: In order to have convex TP model to which the LMI con-
trol design conditions can be applied, let us generate SNNithdype weighting
functions by the TP model transformation. The results apgotied on Figure 3.

TP MODEL 2: In many cases the convexity of the TP model is not enough,
the further LMI design is not feasible. In order to relax tleadibility of the LMI
conditions, let us define the tight convex hull of the LPV mloda generating close
to NO type weighting functions by the TP model transformatiee Figure 4.

TP MODEL 3: Let us further modify the weighting functions and define thei
INO-RNO type, see Figure 5.

The above resulting weighting functions can be derivedydically in some
cases, but as the model become more and more complex, tiyticalalerivations
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Figure 6: Weighting functions of the TP model 0 on dimensixis) andxu(t) for
the approximated system

needs more and more expertise. Moreover, the analyticalatiens of the tight
convex hull or INO-RNO type weighting functions need thelgtizal solution of
the tight convex hull problem that is unavailable in general spite of this, the
TP model transformation requires a few minutes and is notiéent on the actual
analytical form of the given LPV model. If the model is chadgee can simply
execute the TP model transformation again.

3.2 Approximation trade-off

As the previous subsection described the TP model transtavmis an efficient
tool the transform analytical system into exact affine medélowever when the
complexity of the system is high, i.e. the number of nonlingianensions and/or
number of nonzero singular values, the rank is high, thenameeasily face to com-
putation complexity problems. Therefore, during the TP eldcinsformation, it is
possible to control the complexity of resulting system bggiag less singular val-
ues than the rank of the system. In this case the TP model 3aordyproximation
of the original system. The maximal approximation errothaf $ysteme is the sum
of the discarded singular values

As in most cases it is to expensive to work with 14 affine mqdetsl in real
world situations the actuators accuracy is much worth thamtodeling accuracy,
it is possible to reduce the model. If we only keep the fougbg} singular values
in dimensionxsz and keep the two singular values in dimensianthe system can
be reduced to 8 affine models. The theoretically maxinugrapproximation error
is the sum of the discarded singular values the meamst- 016+ 01,7 = 2.4535,
however by checking the actubj error for 1000 test points, an average error of
0.080307 is received. Thus, the system can be reduced to arsydtbalf the
complexity while it is still accurate enough for real workperiments. The resulting
basis functions are depicted in Figure 6-9.
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Conclusion

This paper shows how the TP model transformation is capdbiiefining affine
models with various types of convex hulls of a given LPV madded few minutes
without analytical derivations and also discussed thestiaffiproblem between ap-
proximation accuracy and model complexity. We may conclindé the TP model
may replace the analytic affine model decomposition and eaanbeffective tool
for generating models for real world situations. We studiedexample of the LPV
model of the Single Pendulum Gantry.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]

8]

El

[10]

P. Baranyi. Output-feedback design of 2-D aeroelagtitesn. Journal of Guidance, Control, and
Dynamics (in Press)

P. Baranyi. Tensor product model based control of 2-D elasiic system.Journal of Guidance,
Control, and Dynamics (in Press)

P. Baranyi. TP model transformation as a way to LMI basedrotler design.|EEE Transaction
on Industrial Electronics51(2):387—-400, April 2004.

P. Baranyi, D. Tikk, Y. Yam, and R. J. Patton. From diffetiahequations to PDC controller design
via numerical transformationrComputers in Industry, Elsevier Scien&&:281-297, 2003.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. lanenatrix inequalities in system and
control theory.Philadelphia PA:SIAM, ISBN 0-89871-334-%094.

P. Gahinet, A. Nemirovski, A. J. Laub, and M. ChilalLMI Control Toolbox The MathWorks,
Inc., 1995.

Fetah Kolon€, Alen Poljugan, and Alojz Slutej. Modern laboratory copicéor mechatronic
education. InXXVII International Convention MIPRO 200fages 143-146, Opatija, Croatia,
May 2004.

Fetah Kolong, Alen Poljugan, and Zeliko Jakopdvi Laboratory-based and industrial-oriented
course in mehatronics. IRAroceedings of 13th International Conference on Electrigdaves and
Power Electronics (EDPE’05)pages 1-8, Dubrovnik, 2005.

C. W. Scherer and S. Weiland.inear Matrix lequalities in Contral DISC course lecture notes.
DOWNLOAD: http://www.cs.ele.tue.nl/SWeiland/Imid.pd Q0.

D. Tikk, P. Baranyi, R. J. Patton, and J. Tar. ApproxiroatiCapability of TP model forms.
Australian Journal of Intelligent Information Processi8ystems3(3):155-163, 2004.



