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Abstract— The Tensor Product (TP) model transformation is a recently proposed technique
for transforming given Linear Parameter Varying (LPV) models into affine model form,
namely, to parameter varying convex combination of Linear Time Invariant (LTI) models.
The main advantage of the TP model transformation is that the Linear MatrixInequality
(LMI) based control design frameworks can immediately be applied to theresulting affine
models to yield controllers with tractable and guaranteed performance. The effectiveness of
the LMI design depends on the LTI models of the convex combination. Therefore, the main
objective of this paper is to study how the TP model transformation is capable of determin-
ing different types of convex hulls of the LTI models and how the optimal trade-off between
the model’s accuracy and the computational cost can be determined. The study is conducted
trough the example of a translational electromechanical system, the SinglePendulum Gantry
(SPG).

1 Introduction

The affine model form is a dynamic model representation whereupon LMI based
control design techniques can immediately be executed. It describes given LPV
models by a parameter varying convex combination of LTI models. The TP model
form is a kind of affine decomposition, where the convex combination is defined by
one variable weighting functions of each parameter separately. Convex optimiza-
tion or linear matrix inequality based control design techniques can immediately be
applied to affine, hence to TP models [5, 6, 9]. An important advantage of the TP
model representation is that the convex hull defined by the LTI models can readily
be modified and analyzed via the one variable weighting functions. Furthermore,
the feasibility of the LMI’s can be considerably relaxed by modifying the type of
the resulting convex hull.

The TP model transformation is a recently proposed numerical method to trans-
form LPV models into TP model form [3,4]. It is capable of transforming different
LPV model representations (such as physical model given by analytic equations,
fuzzy, neural network, genetic algorithm based models) into TP model form in a
uniform way. In this sense it replaces the analytical derivations and affine decom-



positions (that could be a very complex or even an unsolvabletask). Execution of
the TP model transformation takes a few minutes by a regular Personal Computer.
The TP model transformation minimizes the number of the LTI components of the
resulting TP model. Furthermore, the TP model transformation is capable of result-
ing different types of convex hulls of the given LPV model, and give the option to
the user to define the trade-off between the model’s approximation accuracy and the
computational costs.

In this paper we study how the TP model transformation is applicable to gen-
erate different types of convex hulls of the given LPV modelsin different trade-off
situations. The study is conducted through the example of a translational electro-
mechanical system, the Single Pendulum Gantry (SPG).

2 Preliminaries

2.1 Linear Parameter-Varying state-space model

Consider the following parameter-varying state-space model:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t), (1)

y(t) = C(p(t))x(t)+D(p(t))u(t),

with inputu(t), outputy(t) and state vectorx(t). The system matrix

S(p(t)) =

(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)

∈ R
O×I (2)

is a parameter-varying object, wherep(t) ∈ Ω is time varyingN-dimensional pa-
rameter vector, and is an element of the closed hypercubeΩ = [a1,b1]× [a2,b2]×
·· ·× [aN,bN] ⊂ R

N. p(t) can also include some elements ofx(t).

2.2 Convex state-space TP model

S(p(t)) can be approximated for any parameterp(t) as the convex combination
of LTI system matricesSr , r = 1, . . . ,R. MatricesSr are also calledvertex systems.
Therefore, one can define weighting functionswr(p(t))∈ [0,1]⊂R such that matrix
S(p(t)) can be expressed as convex combination of system matricesSr . The explicit
form of the TP model in terms of tensor product becomes:

(

ẋ(t)
y(t)

)

≈S
N
⊗

n=1
wn(pn(t))

(

x(t)
u(t)

)

(3)

that is
∥

∥

∥

∥

S(p(t))− S
N
⊗

n=1
wn(pn(t))

∥

∥

∥

∥

≤ ε.



Here,ε symbolizes the approximation error, row vectorwn(pn) ∈ R
In n = 1, . . . ,N

contains the one variable weighting functionswn,in(pn). Functionwn, j(pn(t)) ∈
[0,1] is the j-th one variable weighting function defined on then-th dimension ofΩ,
andpn(t) is then-th element of vectorp(t). In (n = 1, . . . ,N) is the number of the
weighting functions used in then-th dimension of the parameter vectorp(t). The
(N + 2)-dimensional tensorS ∈ R

I1×I2×···×IN×O×I is constructed from LTI vertex
systemsSi1i2...iN ∈ R

O×I . For further details we refer to [2–4]. The convex combi-
nation of the LTI vertex systems is ensured by the conditions:

Definition 1 The TP model (3) is convex if:

∀n∈ [1,N], i, pn(t) : wn,i(pn(t)) ∈ [0,1]; (4)

∀n∈ [1,N], pn(t) :
In

∑
i=1

wn,i(pn(t)) = 1. (5)

This simply means thatS(p(t)) is within the convex hull of the LTI vertex sys-
temsSi1i2...iN for anyp(t) ∈ Ω.

S(p(t)) has a finite element TP model representation in many cases (ε = 0 in
(3)). However, exact finite element TP model representationdoes not exist in gen-
eral (ε > 0 in (3)), see Ref. [10]. In this caseε 7→ 0, when the number of the LTI
systems involved in the TP model goes to∞.

2.3 TP model transformation

The TP model transformation starts with the given LPV model (1) and results in the
TP model representation (3), where the trade-off between the number of LTI vertex
systems and theε is optimized [3]. The TP model transformation offers options to
generate different types of the weighting functionsw(·). For instance:

Definition 2 SN - Sum Normalization Vectorw(p), containing weighting functions
wi(p) is SN if the sum of the weighting functions is 1 for all p∈ Ω.

Definition 3 NN - Non Negativeness Vectorw(p), containing weighting functions
wi(p) is NN if the value of the weighting functions is not negative for all p ∈ Ω.

Definition 4 NO - Normality Vectorw(p), containing weighting functions wi(p) is
NO if it is SN and NN type, and the maximum values of the weighting functions are
one. We say wi(p) is close to NO if it is SN and NN type, and the maximum values
of the weighting functions are close to one.

Definition 5 RNO - Relaxed Normality Vectorw(p), containing weighting func-
tions wi(p) is RNO if the maximum values of the weighting functions are the same.



Definition 6 INO - Inverted Normality Vector w(p), containing weighting func-
tions wi(p) is INO if the minimum values of the weighting functions are zero.

All the above definitions of the weighting functions determine different types of
convex hulls of the given LPV model. The SN and NN types guarantee (4), namely,
they guarantee the convex hull. The TP model transformationis capable of always
resulting SN and NN type weighting functions. This means that one can focus
on applying LMI’s developed for convex decompositions only, which considerably
relaxes the further LMI design. The NO type determines a tight convex hull where
as many of the LTI systems as possible are equal to theS(p) over somep ∈ Ω and
the rest of the LTI’s are close toS(p(t)) (in the sense ofL2 norm). The SN, NN and
RNO type guarantee that those LTI vertex systems which are not identical toS(p)
are in the same distance fromS(p(t)). INO guarantees that different subsets of the
LTI’s defineS(p(t)) over different regions ofp ∈ Ω.

These different types of convex hulls strongly effect the feasibility of the further
LMI design. For instance paper [1] shows an example when determining NO is use-
ful in the case of controller design while the observer design is more advantageous
in the case of INO type weighting functions.

In order to have a direct link between the TP model form and thetypical form
of LMI conditions, we define the following index transformation:

Definition 7 (Index transformation)Let

Sr =

(

Ar Br

Cr Dr

)

= Si1,i2,..,iN ,

where r= ordering(i1, i2, . . . , iN) (r = 1. . .R = ∏n In). The function “ordering”
results in the linear index equivalent of an N dimensional array’s index i1, i2, . . . , iN,
when the size of the array is I1× I2×·· ·× IN. Let the weighting functions be defined
according to the sequence of r:

wr(p(t)) = ∏
n

wn,in(pn(t)).

By the above index transformation one can write the TP model (3) in the typical
form of:

S(p(t)) =
R

∑
r=1

wr(p(t))Sr .

Note that the LTI systemsSr and Si1,i2,...,iN are the same, only their indices are
modified, therefore the hull defined by the LTI systems is the same in both forms.

3 Case study of the Single Pendulum Gantry

The Single Pendulum Gantry system is used for educational purposes at University
of Zagreb, Croatia. It is an experimental testbed, and the goal is to design, compare



Figure 1: Schematic of the Single Pendulum Gantry model

and evaluate several controller approaches. For more details about the testbed we
refer to [7,8].

Let us consider the stabilization problem as shown in Figure1. Here we give
only a brief discussion, for detailed description we refer to [7, 8]. Letting x =
(

x1 x2 x3 x4
)T

=
(

xc ẋc α α̇
)T

, the equations of motion in linear param-
eter-varying state-space form is:

ẋ = f(x)x+g(x)u, (6)

where

f(x) =









0 1 0 0
0 A1/Ax A2/Ax A3/Ax

0 0 0 1
0 A4/Ax A5/Ax A6/Ax









, g(x) =









0
B1/Ax

0
B2/Ax









, and



Table 1: Parameters of the SPG system
Description Parameter Value Units
Equivalent viscous damping coefficient Beq 5.4 N ms/rad
Viscous damping coefficient Bp 0.0024 N ms/rad
Planetary gearbox efficiency ηg 1 —
Motor efficiency ηm 1 —
Gravitational constant of earth g 9.81 m/s2

Pendulum moment of inertia Ip 0.0078838 kg m2

Rotor moment of inertia Jm 3.9001e-007 kg m2

Planetary gearbox gear ratio Kg 3.71 —
Back electro-motive force constant Km 0.0076776 —
Motor torque constant Kt 0.007683 —
Pendulum length from pivot to COG lp 0.3302 m
Lumped mass of the cart system Mc 1.0731 kg
Pendulum mass Mp 0.23 kg
Motor armature resistance Rm 2.6 Ω
Motor pinion radius rmp 0.00635 m

A1 = −(Ip +Mpl2
p)

(

ηgK2
gηmKtKm

Rmr2
mp

+Beq

)

A2 =
M2

pl2
pgcos(x3)sin(x3)

x3

A3 = (M2
pl3

p + lpMplp)sin(x3)x4 +MplpBpcos(x3)

A4 = Mplpcos(x3)

(

Beq−
ηgK2

gηmKtKm

Rmr2
mp

)

A5 =
−(Mc +Mp)Mplpsin(x3)

x3

A6 = −(Mc +Mp)Bp−M2
pl2

pcos(x3)sin(x3)x4

Ax = (Mc +Mp)Ip +McMpl2
p +M2

pl2
psin2(x3)

B1 = −(IpMplp)
2 ηgKgηmKt

Rmrmp

B2 = −Mplpcos(x3)
ηgKgηmKt

Rmrmp

The parameters of the simulated system are given in Table 1.

3.1 TP model representations of the Single Pendulum Gantry

Observe that the nonlinearity is caused byx3(t) andx4(t). For the TP model trans-
formation we define the transformation space asΩ = [−a,a]× [−a,a] (x3(t) ∈

[−a,a] and x4(t) ∈ [−a,a]), wherea = 90
180π rad (note that these intervals can be

arbitrarily defined). Let the density of the sampling grid be101×101. The sam-
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Figure 2: Weighting functions of the TP model 0 on dimensionsx3(t) andx4(t)

pling results inAs
i, j and Bs

i, j , where i, j = 1. . .101. Then we construct the ma-

trix Ss
i, j =

(

As
i, j Bs

i, j

)

, and after that the tensorS s ∈ R
101×101×4×5 from Ss

i, j . If
we execute HOSVD on the first two dimensions ofS s then we find that the rank
of S s on the first two dimensions are 7 and 2 respectively. The singular values
are as follows in the dimensionx3: σ1,1 = 1609.4, σ1,2 = 206.72, σ1,3 = 12.604,
σ1,4 = 10.719,σ1,5 = 2.3109,σ1,6 = 0.14075,σ1,7 = 0.001854, and in the dimen-
sion x4: σ2,1 = 1622.7, σ2,2 = 10.965. This means that the SPG system can be
exactly given as convex combination of 7×2 = 14 linear vertex models (theL2 nu-
merical error of the TP model transformation for exact modelis less than 10−12).
The TP model transformation describes SPG system as:

ẋ(t) =
7

∑
i=1

2

∑
j=1

w1,i(x3(t))w2, j(x4(t))(A i, jx(t)+Bi, ju(t)) . (7)

In the followings we show that the type of the convex combination can readily
be modified by the TP model transformation:

TP MODEL 0: The resulting weighting functions depicted on Figure 2 are
directly obtained by the TP model transformation without any further modification.
They are between−1 and+1 and orthogonal. The resulting LTI vertex systems do
not define the convex hull of the LPV model, but their number isminimized.

TP MODEL 1: In order to have convex TP model to which the LMI con-
trol design conditions can be applied, let us generate SN andNN type weighting
functions by the TP model transformation. The results are depicted on Figure 3.

TP MODEL 2: In many cases the convexity of the TP model is not enough,
the further LMI design is not feasible. In order to relax the feasibility of the LMI
conditions, let us define the tight convex hull of the LPV model via generating close
to NO type weighting functions by the TP model transformation, see Figure 4.

TP MODEL 3: Let us further modify the weighting functions and define their
INO–RNO type, see Figure 5.

The above resulting weighting functions can be derived analytically in some
cases, but as the model become more and more complex, the analytical derivations
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Figure 3: SN and NN type weighting functions of the TP model 1 on dimensions
x3(t) andx4(t)
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Figure 4: Close to NO type weighting functions of the TP model2 on dimensions
x3(t) andx4(t)
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Figure 5: INO–RNO type weighting functions of the TP model 3 on dimensions
x3(t) andx4(t)
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Figure 6: Weighting functions of the TP model 0 on dimensionsx3(t) andx4(t) for
the approximated system

needs more and more expertise. Moreover, the analytical derivations of the tight
convex hull or INO–RNO type weighting functions need the analytical solution of
the tight convex hull problem that is unavailable in general. In spite of this, the
TP model transformation requires a few minutes and is not dependent on the actual
analytical form of the given LPV model. If the model is changed we can simply
execute the TP model transformation again.

3.2 Approximation trade-off

As the previous subsection described the TP model transformation is an efficient
tool the transform analytical system into exact affine models. However when the
complexity of the system is high, i.e. the number of nonlinear dimensions and/or
number of nonzero singular values, the rank is high, then we can easily face to com-
putation complexity problems. Therefore, during the TP model transformation, it is
possible to control the complexity of resulting system by keeping less singular val-
ues than the rank of the system. In this case the TP model 3 onlyan approximation
of the original system. The maximal approximation error of the system,ε is the sum
of the discarded singular valuesσi .

As in most cases it is to expensive to work with 14 affine models, and in real
world situations the actuators accuracy is much worth than the modeling accuracy,
it is possible to reduce the model. If we only keep the four biggest singular values
in dimensionx3 and keep the two singular values in dimensionx4, the system can
be reduced to 8 affine models. The theoretically maximumL2 approximation error
is the sum of the discarded singular values the meansσ1,5 + σ1,6 + σ1,7 = 2.4535,
however by checking the actualL2 error for 1000 test points, an average error of
0.080307 is received. Thus, the system can be reduced to a system of half the
complexity while it is still accurate enough for real world experiments. The resulting
basis functions are depicted in Figure 6–9.
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Figure 7: SN and NN type weighting functions of the TP model 1 on dimensions
x3(t) andx4(t) for the approximated system
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Figure 8: Close to NO type weighting functions of the TP model2 on dimensions
x3(t) andx4(t) for the approximated system
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Figure 9: INO–RNO type weighting functions of the TP model 3 on dimensions
x3(t) andx4(t) for the approximated system



4 Conclusion

This paper shows how the TP model transformation is capable of defining affine
models with various types of convex hulls of a given LPV modelin a few minutes
without analytical derivations and also discussed the trade-off problem between ap-
proximation accuracy and model complexity. We may concludethat the TP model
may replace the analytic affine model decomposition and can be an effective tool
for generating models for real world situations. We studiedthe example of the LPV
model of the Single Pendulum Gantry.
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