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Abstract: In this paper we propose a new mutual identification scheme to be used in 
Electronic Payment Systems, which implements an enhanced McEliece signature. Based on 
the framework of a three-step identification protocol, we’d like to obtain increasing 
security and fault tolerance, maintaining a low amount of execution time. 
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1 Introduction 

The Electronic Payment Systems are growing in importance with the rapid spread 
of e-commerce. The comfortable use of these systems raise a lot of technical 
problems, like the need of a secure and reliable communication between 
participant entities. These problems appear more seriously in the case of wireless 
networks because of the unstable and interceptable connection. 

The first aspect in assurance of the security is a secure mutual identification before 
any kind of transaction. The identification protocols are based on the idea 
challenge – response: if an entity A would like to ensure about the real identity of 
the entity B, then A will generate a random number named challenge. A will ask 
B to make a well known computation based on this challenge and based on a 
secret information that only the real B knows (for example the secret key of B). If 
the computed answer (response) is identical with the expected response computed 
by A, then B has successfully convinced A about his real identity. 

The basic identification protocol is the three-step identification protocol (Figure 
1), which offers a theoretical frame for further enhancements [1, 2]. The three-step 
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identification protocol is a verification of knowledge based identification protocol. 
The interactions between prover and verifier are executed in three steps and the 
protocol uses the secret key of the prover, which can identify in a unique way the 
prover. For the implementation of the protocol, two Abelian groups are used: (G, 
+, 0) and (J, ⋅, 1) and a homomorphism f: G→J: 

∀x, y ∈G, f(x+y) = f(x) ⋅ f(y) (1) 

The prover must convince the verifier that he knows the secret key x∈G, so that h 
= f (x), where h∈J is the corresponding public key, well known even by the prover 
and the verifier too. 

 Prover (P) Verifier (V) 

Common entry – public key: h 

Secret key: x
h=f(x)

Generate a random ω∈G
and compute  a←f(ω)

Compute r←ω+c(-x)

Choose a random c∈Z2
t 

Verify if f(r)⋅hc=a 

a 

c 

r 

 
Figure 1 

The three-step identification protocol 

This basic protocol accepts different implementations. The best-known 
implementation is the Schnorr protocol, which uses the RSA encryption method 
and reduces the number of messages from 3 to 1 [3]. To obtain the Schnorr 
identification protocol from the three-step identification protocol, the Abelian 
group (G, +, 0) will be replaced with the group (Zq, + (mod q), 0) and the group (J, 
⋅, 1) with the Abelian group (Gq, ⋅ (mod q), 1). The homomorphism will be the one 
way function fp,q,g: Zq→Gq, fp,q,g(x)=gx mod p. The parameters p, q, g, must satisfy 
the special discrete logarithm problem specifications. With these modifications the 



three-step identification protocol is transformed in the Schnorr identification 
scheme. This protocol has powerful security properties, but it doesn’t provide any 
fault tolerant capabilities. 

In this paper we propose a new secure and fault tolerant protocol, with reduced 
execution speed. We investigate the execution time of this protocol compared to 
the above-mentioned protocols. 

2 The Proposed Protocol 

The basic idea for the development of a new, fault tolerant identification protocol 
is the common use of the same error correcting code for security and fault 
tolerance. Such a method was proposed by McEliece, who has elaborated a public 
key cryptosystem based on Goppa codes [4]. The high security of this system is 
given by the deliberate injection of random errors during the encoding of a 
message, which are corrected by the decoding algorithm. We make use of this 
theory by implementing a similar scheme for our purposes in the identification 
problem. 

We propose a modification of the original three-step protocol using an 
enhancement of McEliece signature for the purpose of a systematic design. (We 
have proposed also a modified version of the Schnorr protocol in [5].) The 
enhancement consists of the use of Reed-Solomon error correcting codes instead 
of Goppa codes, the design methodology being described in [6]. The modified 
three-step identification protocol is presented in figure 2. PMEV and PMEP are the 
verifier and prover McEliece public keys; SMEV and SMEP are the verifier and the 
prover McEliece secret keys. The encoding of a message m follows the equation 

PME(m) = E m + z,  (2) 

where 

E = S G P (3) 

is the encryption matrix. G is the generator matrix of the Reed-Solomon code, P is 
a randomly generated permutation matrix, and S is a randomly generated non-
singular matrix. The random error pattern, denoted by z, must satisfy 

2
1)(ω −

<
dz

, (4) 

where )(ω z  is the Hamming weight of z, and d is the Hamming distance of the 
used Reed-Solomon code. 

This protocol is complete, witness hiding and zero knowledge in the sense of [7]. 



 Prover (P) Verifier (V) 

The verifier’s secret and public key: 
SMEV, PMEV 

The prover’s public key: PMEP 

Encrypt the message with the verifier’s 
public key: PMEV(r, ID) 

PMEV(r, ID) 

Choose a random number r, and  
concatenate it with the prover’s ID on the 

last n bits: (r, ID) 

Prover’s McEliece secret key and public key:  
SMEP, PMEP 

Verifier’s public key: PMEV 

Decript the message and identify the 
proposed prover: 

SMEV(PMEV(r, ID)) = (r, ID) 

Generate a random challenge y, and 
compute c = r + y  

The answer will be:   (r, c) 

Encrypt the message with the public key of 
the proposed prover: PMEP(r, c) 

PMEP(r, c) 

Decrypt the answer SMEP(PMEP(r, c)) = (r, c), 
verify r, and compute y = c - r 

Encrypt the challenge y with the verifier’s 
public key: PMEV(y) 

PMEV(y) 

Decrypt the answer and verify  
the challenge y: SMEV(PMEV(y)) =?= y  

Figure 2 
The proposed mutual identification protocol based on enhanced McEliece signature 

The security of our protocol is based on the security of the three-step identification 
protocol, but is further enhanced by use of McEliece cryptosystem in the encoding 
of all the messages. The fault tolerant capability of the proposed scheme depends 



on the difference between the Hamming distance d of the code and the weight of 
the used error pattern z. 

3 Experimental Results 

In order to compare the execution times, we have implemented the following three 
protocols: 

– the three-step identification protocol with RSA encryption, 

– the Schnorr protocol, 

– the proposed, enhanced McEliece based protocol. 

The tests were executed on six different platforms, because many types of 
equipment in Electronic Payment Systems make use of cheap, low performance 
processors (e.g. smart cards). The execution times are shown in table 1. The 
Schnorr identification protocol is faster than the three-step protocol, because there 
are fewer messages. The proposed, enhanced McEliece based protocol is the most 
efficient in execution time, because it uses matrix computation for encoding and 
decoding, instead of time consuming exponential computation used in RSA. 
Beyond this advantage, our protocol provides fault tolerant capability for the 
occurring errors in the transmission channel. 

Protocol type 
and key length  

PI, 
166 MHz

PII,  
300 MHz

PIII, 
550 MHz

AMD D, 
900 MHz 

AMD D, 
1300 
MHz 

P4,  
1800 
MHz 

64 5,173 4,717 4,041 3,197 2,951 2,677 Three-
step 128 11,528 9,872 9,184 8,573 7,612 6,291 

64 3,074 2,073 1,292 0,983 0,816 0,581 
Schnorr 

128 9,381 7,586 6,087 4,475 3,166 1,537 

64 0,879 0,625 0,417 0,305 0,275 0,128 
McEliece 

128 1,752 1,427 1,039 0,877 0,629 0,453 

Table 1 
The protocol execution times in function of key length for different processors [seconds] 

Conclusions 

For increasing security, fault tolerance and execution speed, we presented a new 
mutual identification protocol based on the three-step identification protocol and 
enhanced McEliece signature. Because of the use of error correcting Reed-
Solomon codes both for encryption and fault tolerance, the protocol has a low 



execution time and is suitable to be used in the presence of perturbations and 
noises. 
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