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Abstract: We show that, for a single row routing specification with maximum density d, the 
difference between [d/2] and the real lower bound of the minimum width in the 
unconstrained two-layer routing can be as high as a positive percentage of d. 

One of the simplest questions in the theory of the detailed routing of very large 
scale integrated circuits (VLSI) is to find the minimum width required to realize a 
single row routing problem. (For definitions and previous results the reader is 
referred to the survey [3].) 

In the two-layer Manhattan model the minimum width w is known to equal the 
maximum density d of the specification [1] and a linear time algorithm is available 
to find a routing with this width. 

On the other hand, in the two-layer unconstrained model even the complexity of 
finding the minimum width is unknown (several people believe that it is NP-hard). 
The definition of the models clearly imply [d/2] ≤ w ≤ d, where square brackets 
indicate upper integer part. 

Simple examples like 

1  2  3 … d−1  d | d  d−1  … 3  2  1 

show that the lower bound can be attained. (The vertical bar in the middle 
indicates that the maximum density is really d for this specification and the 
optimal routing is shown as the left hand side of Figure 1.) 
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Figure 1 

Csaba Megyeri observed [2] that certain examples like 

1  2  3 … d−1  d | d  1  d−1 | d  d−1  … 3  2  1 

cannot be routed with width  [d/2]  if d ≥ 4 (see an incomplete routing at the right 
hand side of Figure 1 and observe that the maximum density is attained in every 
column between the two vertical bars). 

This construction can be extended in a straightforward way to show that, for any 
fixed positive integer t, one can find a (sufficiently long) specification so that its 
minimum width is at least [d/2] + t. However, this would not imply that the 
difference between the real lower bound and [d/2] can be as high as a positive 
percentage of d. In this note we show that this is indeed the case. 

THEOREM: Let, for simplicity, d be even and let k ≤ d/2 − 1 be an arbitrary 
integer. Then the specification 

1  2  3 … k+1  k+2  … d−1  d | 1  2  3  …   k+1 | k+2 … d−1  d  1  2  3  … k+1 

cannot be routed with width d/2 + k/2. This shows that if c' is the best possible 
lower bound of form cd ≤ w then c' cannot be smaller than ¾. 

Proof: For simplicity, let us call the area consisting of the first d columns (left to 
the first vertical bar) as the leftmost part and that with the last d columns (right to 
the second vertical bar) as the rightmost part (see Figure 2). Observe that d is the 
maximum density of the specification and it is attained in every column of the 
central part, i. e. between the two vertical bars. 

 
Figure 2 



All the d nets have terminals both in the leftmost and in the rightmost parts. Hence, 
even in the „best” case (that is, if every net is routed on a single horizontal track, 
without „doglegs”), we need at least width d/2 (if every horizontal track is used by 
two distinct nets at the two different sides of the board, as in the left hand side of 
Figure 1). More generally, if a routing with width d/2 + t exists then 2t horizontal 
tracks will be used by a single net only (they will be called single tracks) and the 
remaining d/2 − t tracks will be used by two distinct nets (they will be called 
double tracks). If doglegs were also permitted then the number of the single tracks 
would be even smaller. 

We may suppose, without loss of generality, that the single tracks are closer to the 
row of the terminals than the double tracks (see the Northern and the Southern 
parts of the whole area in Figure 2) since a double track l separates the tracks 
south of l from the terminals. Similarly, we may suppose that all the single tracks 
use the same side of the board, for otherwise two adjacent single tracks using 
different sides of the board together would lead to the same separation, only in a 
less area-effective way. This common side of the board will be called the top side 
and the other one the bottom side. 

Among the d nets of the specification, (k+1) consist of 3 terminals each and the 
remaining d − (k+1) nets consist of 2 terminals each. We shall refer to them 
shortly as 3-nets and 2-nets, respectively. Observe that the central part of the area 
consists of just the columns, corresponding to the central terminals of the 3-nets. If 
such a central terminal is connected to its corresponding track then this track must 
be in the Northern part and the connection must be performed in the bottom side. 

Our next observation is illustrated in Figure 3 which shows the only possible 
routing of the given specification 

1 … 2l | 1 … 2l 

with width l. The vertical line e has density 2l and the nets, containing its 
neighbouring terminals 2l and 1 must use the northernmost track.  

 
Figure 3 



Since every track must be double, the northernmost one would separate terminals 
2l and 1 from their nets in any other case. Similarly, the nets for the next two 
terminals (2l−1) and 2 must use the second track etc. 

We use indirect proof. 

There are more than k ones among the 2-nets and also more than k ones among the 
3-nets in this construction, hence at least one net of each group must be wired in 
the southern part. 

We distinguish three cases according to the numbers of the terminals of those nets 
which are wired in the northern part. 

If there are only 2-nets in this area, then the only way how the central terminals of 
the 3-nets can be wired is illustrated in Figure 4. In this way the wiring order of 
the nets is determined: we may suppose without loss of generality that we begin 
wiring from the leftmost part, then the numbers of the wired 2-nets are going from 
(k+2) to (2k+1) and the numbers of the 3-nets must go from (k+1) to 2 (see Figure 
4). Figure 4 also shows that nets 1 and (2k+2) cannot be routed: They must use the 
northernmost track of the southern part and they can really reach it using the 
bottom side but there none of them can change layers. 

 
Figure 4 

In the second case we use only 3-nets in the northern part, see Figure 5. The wires 
of these nets must change layer, otherwise the 2-nets cannot be wired. And if the 
northenmost track of the southern part is wired, the remaining 3-net also has to 
change layer, but it blocks a southern track of another net. 

 
Figure 5 

In the last case both 2-nets and 3-nets are allowed in the northern part, see Figure 
6, but this case is reduced to the others because of the binding order of the nets. 



 
Figure 6 

As a last remark let us mention that if the numberof the 3-nets and/or that of the 2-
nets is less than (k+1) then the routing can be performed with a smaller width 
since every wire can be placed to the Northern part (see Figure 7). 

 
Figure 7 
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