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Abstract — This paper presents a cognitive model based on the visual cortex, which is able
to perform image contouring by the means of extracting contour line segments as abstract
objects. Two methods are presented to extract the line segments from the input image.
These line segments are later organized according to their orientation and length in a three-
dimensional array, the Visual Feature Array, which allows image processing and transforma-
tions along new dimensions, such as orientation or length. Negative Filtering is the process
when the Visual Feature Array is used to reconstruct the original contour image by redraw-
ing the stored line segments, thus removing noise from the image. The presented approach
is strongly based on cognitive psychology and neurobiology. The processing model has a
strictly parallel architecture in order to mimic its biological inspirator, and to allow constant
time processing on a parallel computational hardware.

1 Introduction
In order to show why cognitive models can give the necessary boost in computation,
consider the example where a person has to decide whether there is a cat or some-
thing else on an image. Such a task is impossible for a computer to perform today,
yet a human can do it reliably in half a second or less. This result is very interest-
ing when considering that the “processing time” of a typical neuron is in the range
of milliseconds while that of a logic gate of a modern silicon-based computer is in
the range of nanoseconds. The computational capacity of the brain thus has to lie
in its special architecture and particular information representation and processing,
rather than in the speed of its processing elements. It is our belief that in order to
step beyond the borders of today’s computer systems’ architectures the basic way
of information representation and processing has to be changed. For new ideas we
turn to existing cognitive systems in biological architectures to study them, because
they already bear the solutions that we are seeking for. Hubel and Wiesel first de-
scribed the visual system [1], and suggested that iso-orientation domains are packed
in essentially linear parallel stripes, which Hubel [2] subsequently referred to as the
“ice-cube” model. The model of Hubel, and later V1 models [3] suggest that cells
in the visual cortex are organized in a 3D structure, where a location on the visual
field and an input stimulus preference (e.g. orientation preference) can be assigned
to each cell. A cognitive system is implemented in a biological neural network,
where simple units of computation are connected in a very complex structure. Our



research goal is to turn the cognitive information processing system into engineer-
ing models which can later be organized into a cognitive psychology inspired model
running on a biology related computational architecture.

This paper introduces a model strongly based on the cognitive functions of the
visual cortex for image contour detection. The model was elaborated on the analogy
of the mammalian visual system. Each phase from the retina to the visual cortex is
represented in the model by imitating the biological structures and cognitive func-
tions in order to perform similar image transformations and operations. In classical
image processing algorithms, such as edge detection using a sobel filter, both the
input and the output are matrices containing pixels. These algorithms thus represent
a pixel-to-pixel transformation between two matrices. Similarly to the neural net-
works in the cerebral cortex, the model proposed in this paper implements a pixel-
to-feature transformation, where feature refers to a more abstract visual object, such
as a line segment of a certain length and orientation, or a line crossing. The result
of the transformation is thus a feature-level abstraction of the input image. There
are two different ways to do the pixel-to-feature transformation. In the first case
a binary mask matrix is applied on the edge detected input image, as described in
[4][5]. The other possibility is to use a mask matrix generated using a Gabor func-
tion, which approximates the response characteristics of cortical cells performing
feature abstraction in the visual cortex [6].

The extracted abstract features can also be re-transformed into the pixel level
by a feature-to-pixel inverse transformation, allowing a visual representation of the
feature-level abstraction. The re-transformation of features into pixels will exclude
noise from the result, thus it can be used as a filtering technique, described later in
this paper.

The rest of the paper is organized as follows. Section 2 describes the proposed
architecture of the model for high speed image processing. Section 3 is devoted
to the model evaluation and experimental results. Finally, Section 4 concludes the
paper.

2 Cognitive model of the visual pathway
A scene projected to the retina becomes a two-dimensional image, which is trans-
ferred to the brain for further processing. Such an image is composed of image
features like regions of a certain color and texture, their boundaries as segments
of different orientation and length. The image features make part of more abstract
features like simple shapes, curves, circles.

The main goal of the present model is to understand the basic primitives of an
image, on the analogy of the cerebral cortex as a complex cognitive system. The
understanding of a feature in biology is defined as the firing of a set of neurons,
which tend to fire when that particular feature is presented on the input as a stimulus.
In the proposed model a feature is represented by the activation of a single neuron
instead of a set, and it is considered understood when the corresponding neuron



fires. The neurons of the understood features can project their outputs to higher
and lower levels in the neural hierarchy. Projecting the output further up allows the
neurons in higher levels to understand more abstract features as the composition of
lower level features. On the other hand, a neuron that projects its output to lower
levels in the neural hierarchy can be considered as an expectation from above, and
will help the low-level neurons to understand the lower level features.

This paper concentrates on how primitive image features are understood, and
how they can be used as an expectation in lower levels.

The proposed model in this paper receives an image on its input, which is imme-
diately subjected to an edge detection filter. This filter is based on the receptive field
characteristics of the retinal ganglion cells. In the small region of the visual field
which is centered around the position of the ganglion cell the afferent connections
have a relatively high positive weight, while in the surrounding regions the synapse
weights are inhibitory. The receptive field is modeled with a 3× 3 matrix M1 with
higher positive input weight values in the middle and small negative values in the
surrounding regions.
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The output pattern of the cells with input weights of M1 will be an edge detected
image of the original image. It is to note that at this level of neural processing the
image features understood (or represented by neural activation) are pixels of an edge
detected image, edge elements.

Going further on the visual pathway we find that the receptive fields of the neu-
rons in LGN are also circular like those in the retina. This suggests that the LGN
does not add any extra image processing functionality to the visual pathway. It
rather has an important role in modulating the input to the cortex by attention, but
the exact functionality is still a subject of research.

For the above reason we consider the retinal and LGN-neurons as primary edge
detectors, and their overall functionality in the aspects of image processing is cov-
ered by the M1 matrix in the model. The input from the cells of such receptive fields
project into the visual cortex, where further image processing takes place.

The image representation in the visual cortex is retinotopic, which means that
neighboring regions of the visual field are projected to neighboring regions in the
cortex. The neurons of such a region are tuned to respond to a variety of input stimuli
described by different receptive fields characteristics. This implies that a vast variety
of receptive fields belong to one small region of the visual cortex, and thus to a small
region of the visual field. The variety of receptive fields representing different visual
features (e.g. line orientations) can be organized along new dimensions.

After an edge detection discussed above, an edge detected image is available in



the matrix I where
I ∈ Rn×m, (2)

n and m representing the image dimensions.
According to the visual cortex, several different features can be extracted from

the edge detected image I. The extraction of the features begins with those having
the largest number of pixels, i.e. the longest lines. When the first feature is extracted
from the edge detected image I, the feature pixels are removed from I, resulting a
new matrix that we refer to as I(1). After extracting and removing the kth feature
from I(k−1) the matrix I(k) remains. Using this notation the original edge detected
image is denoted I(0). This step is necessary to ensure that only one of many possible
similar features is extracted from the edge detected image I(0). The kth feature is
removed from I(k−1) and added to a two-dimensional matrix Fk, such that

∀i, j,k : (Fk)i, j ∈ {0;1}, (3)

and the value (Fk)i, j indicates if any pixel of the detected feature k is present in the
edge detected image at the position I(k−1)

i, j .
It is important to note that the features to extract are ordered by the number of

pixels they contain in order to ensure that

Fk ⊇ Fl ,k < l, (4)

where Fk is the set of pixels contained by the kth feature. Since there are several
image features to be extracted from the image, there will be a matrix F for each
of these features. We define the three-dimensional array with the F matrices over-
lapped along a third dimension as follows:

V ∈ Rn×m×r (5)

For the three-dimensional matrix V we introduce the notion of Visual Feature Array
or VFA, where r represents the total number of visual features. By construction, the
element Vi, j,k of the VFA represents if an edge pixel I(k−1)

i, j belongs to the kth visual
feature.

In the VFA each element corresponds to the response of a cortical neuron tuned
to a certain feature in a certain location. In the VFA the features are organized along
a third dimension, orthogonal to the other two dimensions. Such a system of visual
features yields a 3-dimensional neural array model of the primary visual cortex.

In the visual cortex there are neurons tuned to a whole variety of visual fea-
tures. The present model includes the orientation selective cortical cells with end-
inhibition characteristics. Each feature in the VFA can thus be described by an
orientation angle and an optimal length. The possible orientations are equally dis-
tributed with a specified angular resolution. The angles represented in the VFA are
defined with the angle α and angular resolution θ, such that

α ∈ [0 . . .π],α = k ·θ,k ∈ N, (6)
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Figure 1: The matrices in the model that represent the receptive fields of cortical
orientation tuned end-inhibited cells.

and thus the matrix elements (Fα=π/5)i, j will be values of 1 where an edge line
segment with an orientation close to π/5 is found in the edge detected image at Ii, j.

The end-inhibition property of the neurons is also formalized in the model. An
optimal length l of a neuron is a length to which it gives a maximal response. The
different lengths are distributed between the shortest length and the longest length,
and their number is h. Since the line lengths are measured in pixels, the shortest
possible line segment is 3 pixel long. The maximal length can be chosen taking
the requirements of the input image and the available computational capacity into
consideration. Normally this value is between 20 and 30 pixels.

Given an angular resolution of θ and the number of different length values h, the
number of possible visual features r can be assessed as follows:

r =
π
θ
·h. (7)

A visual feature k is thus characterized by two values, an orientation α and
length l. The matrix elements (Fk)i, j will thus have a value of 1 if the edge pixel on
the edge detected image Ii, j belongs a feature with the characteristics of k.

In the visual cortex there are receptive field characteristics that actually define
the visual feature the particular neuron is responsive to. In order to extract the
desired features from an edge detected image, for each feature k a mask matrix Rk
obtained from a corresponding receptive field has to be defined. In the proposed
model the visual features are extracted by a convolution of the edge detected image
and a matrix Rk. In the present case the receptive fields are modeled by binary
matrices instead of matrices with real values. These matrices contain the sought
feature as it may appear on the binary edge detected image. We can choose to use
binary matrices to detect visual features because it is possible to well approximate
the sought features, and binary operations are easier to implement in a hardware. A
series of mask matrices are shown in Figure 1.

Consider a grouping transformation on the VFA, which simply groups all the
layers into one final layer containing all the extracted features. This transformation



Figure 2: Several differently oriented non-binary RF matrices.

equals sending the output of the VFA neurons down in the neural hierarchy, and
can be used to reconstruct an image by redrawing the detected visual features. This
reconstruction will include only the features that were extracted from the original
image. This implies that the noise (pixels not considered as the part of any feature)
will not be present in the reconstructed edge detected image.

2.1 Feature extraction using Gabor functions
It is also possible to use a Gabor filter-like mask matrix to extract the image fea-
tures from the image. Gabor functions can be determined as the product of a two-
dimensional cosine, and a two dimensional Gaussian-function:

Gλ,σ,Θ,α(x,y) = exp(− x̃2 + γ2ỹ2

2σ2 ) · cos(2π
x̃
λ

+α) (8)

x̃ = xcosΘ+ ysinΘ, (9)

ỹ =−xsinΘ+ ycosΘ (10)

where γ is a constant, called the spatial aspect ratio, that determines the elliptic-
ity, σ determines the size of the receptive field, 1

λ is the spatial frequency, Θ is the
preferred orientation, and ϕ defines symmetry. Figure 2 shows different sized and
oriented RF matrices.

Using these receptive fields, more sophisticated and cleaner results are obtained,
because of the inhibitory areas of RF matrices (black areas in figure).

We have introduced the notion of negative filtering as the process of understand-
ing image primitives and reconstructing the image from them. The notion arose
from the fact that on contrary to a filtering process, the above defined process adds
useful information to the image, instead of subtracting it.
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Figure 3: Original test image (a) and the result of the primary edge detection (b)

3 Model evaluation, results
The proposed model has two important advantages compared to classical solutions.
By virtue of the simple but numerous computational units (neurons) that work par-
allel on the solution, the model can perform the proper activation of the VFA and
the negative filtering in constant time. This, however requires a parallel hardware
implementation of the model.

In our case only a computer simulation of the model was available, which al-
lowed to evaluate the functionalities of the model, but not its performance.

The input test image used to evaluate the model is shown in Figure 3a. This
image is subjected to a primary edge detection according to the model. The result is
a binary image of edge elements, with white dots representing high-contrast points
on the original image. This edge-detected image is shown in Figure 3b.

The edge-detected image in our model corresponds to the image that is projected
to the visual cortex. In the model, this image is used as the input to the neurons in
the VFA. In the present implementation 5 different line lengths were used with the
possible orientations to calculate the values of the VFA. These lengths were 3, 5, 9,
17, and 33 pixels.

The VFA layers after the grouping the 3, 9 and 33 pixel-long segments are shown
in Figure 4.

The union of the VFA layers yields the top-down reconstruction of the edge
detected image from the detected line segments. The reconstruction will exclude the
edge elements detected as noise noise, which was not recognized as a visual feature
(a line segment of certain length and orientation). The final, fully reconstructed,
negative filtered image composed from the five layers of V (l) is shown in Figure 4d.

If we look at the case where the Gabor filter is applied, a much smoother edge
representation is obtained.
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Figure 4: The segments of two different orientations (a)-(b) and the segments of two
different line lengths (c)-(d).

Figure 5: Results from the VFA module, using RF matrices containing Gabor-filters.
The sub-figures from top to bottom: Edge-detected image, two sheets of VFA, and
all of the orientations in one image.



4 Conclusion
A model for intelligent contour detection was presented in this paper. The basic
structure and functionality of the model is based on the mammalian primary visual
cortex, which can perform edge contour extraction on an edge detected image. The
extracted contour pixels are clustered into visual features which are more abstract
representations of the visual information. The features are organized into a three-
dimensional orthogonal array (the VFA) according to their properties. The extracted
features are used in two ways: further abstraction or top-down image reconstruction.
This latest adds an augmented information space to the original edge detected im-
age, which we refer to as negative filtering.

The two different feature extraction methods have several advantages and dis-
advantages when compared to each other. The application of binary masks allow
a very fast filtering technique, however, the obtainable angular resolution is rather
poor. The binary matrix has a very important advantage: it can be implemented
using digital circuits.

The Gabor filter-like matrices have a great advantage on the quality of the feature
extraction. They can be adjusted by several parameters, thus a very dense angular
resolution can be achieved. The output of this extraction method is also different
from that of the binary matrices. In the Gabor function case a membership degree
of a certain point to a certain feature is obtained. This solution is much closer
to the biological system, and further processing can be applied taking the feature
strengths into consideration. However, a very important drawback of this method it
it’s computational complexity compared to the binary mask method. Using a special
parallel processing computational tool can however solve this problem, making the
application of Gabor-function a desirable solution.

The VFA containing different features can be submitted to grouping transfor-
mations, that merge layers of the VFA according to certain rules, such as similar
line length or orientation. The grouping transformations are necessary for further
transformations, such as line crossing and vertex detection.

The model and especially the VFA has been designed to operate in a fully paral-
lel manner. In the present system binary array values were used for the sake of easy
hardware implementation. An FPGA or other parallel implementation of the model
yields a constant time contour detection and visual feature extraction.
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