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Abstract: Oscillation of the cerebral blood flow (CBF) is a feature in several physiological 
or pathophysiological states of the brain. In order to distinguish between different 
physiological states, two different classification methods have been developed; a Radial 
Basis Function based Neural Network and a Support Vector Classifier with Gaussian 
kernel. In order to describe the temporal blood flow patterns, two feature extraction 
procedures were applied; spectral matrix and wavelet subband analysis. 
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1 Introduction 

Low frequency spontaneous oscillations in cerebral hemodynamics have been 
observed and linked to certain physiological and patophysiological states, such as 
epilepsy. Therefore it is worthwhile to investigate the possibilities of classification 
of the temporal patterns of this vasomotion. Three classes of CBF signals have 
been distinguished experimentally, and in relation to consecutive administration of 
two different drugs: 



(a) Normal blood flow signals before applying any drugs, that does not 
exhibit low frequency oscillations (LFO-s), referenced as class A; 

(b) Slight oscillation after the administration of L-NAME, a NO synthase 
inhibitor reportedly evoking CBF oscillations, referenced as class B; 

(c) More pronounced oscillation observed after the administration of U-
46619 for stimulating thromboxane receptors, having the effect of also 
inducing LFO, referenced as class C. 

To identify the different states of CBF oscillation described above, different 
classification methods have been employed, using neural network and support 
vector machine classifiers (SVMC). However, these approaches were only partly 
successful because the two-dimensional feature vector could not characterize all 
the features of the time series. Even the most promising technique, the SVMC 
suffered from overlearning. 

The separation of the first class from the two latter has been carried out 
successfully using two feature vector containing elements derived from the 
measured signal. However, the second and third classes cannot be effectively 
distinguished due to the highly overlapping regions (stars and squares), as seen on 
the feature map Fig. 1. Hence the discrimination of the two LFO classes, or 
cerebral blood flow states, is the subject of this paper. 

Two different feature extraction methods have been applied to characterize the 
given time signals, based on spectral and wavelet subband analysis. 
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Figure 1 

Normalized dimensionless feature map of cerebral blood flow: normal blood flow, class A (triangle), 
before administration of U-46619, class B (square) and after administration of U-46619, class C (star) 

from [1] 



2 Feature Extraction 

2.1 Using Spectral Analysis 

According to [2], the two greatest components of a wavelet decomposition do not 
represent adequately the signals derived from drug induced oscillations. A 
different approach is an eigenvalue based characterization. In order to obtain the 
singular values being characteristic of the different states, a matrix has to be 
derived from the time signal. This is obtained by creating a spectral matrix. Given 
the time series of data di, where i = [1…70,000] are the sample points, we form 
window vectors of size n and of range m. By choosing n << m, the following 
window vectors can be constructed: 
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The matrix is built from these window vectors as columns: 

[ ]T
nm

TT uuuA 121 +−⋅⋅⋅= , (2) 

and our spectral matrix is ATA. 

In order to find the optimal window size and range, a series of decompositions 
have been completed, and the reconstructed signals have been compared to the 
original recordings. There is a few percent difference; therefore, for the feature 
extraction, a window size of 50 and a window range of 5000 samples has been 
selected. 

Employing these window parameters, the eigenvalues of the spectral matrix can 
be computed. As it can be seen, in the case of a class C signal on Fig. 2, the first 
six values are good candidates to be the elements of the feature vector describing a 
given signal. 
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Figure 2 

Eigenvalues of the spectral matrix of a class C signal, on a logarithmic scale 

2.2 Feature Extraction via Wavelet Transformation 

Before the discrete wavelet transformation of the time signal can be computed, we 
drop the beginning and the end of this raw signal, getting a signal of length of 216 
samples. 

This transformation decomposes the data into a set of coefficients in the wavelet 
basis. There are 16 sublists containing the wavelet coefficients in the orthogonal 
basis of the orthogonal subspaces. 

The contributions of the coefficients to the signal at different scales are 
represented by the phase space plot, see Fig. 3. Each rectangle is shaded according 
to the value of the corresponding coefficient: the bigger the absolute value of the 
coefficient, the darker the area. The time unit is 5 msec. 

 
Figure 3 

The phase space plot of the DWT of the time signal 



Normally, from the wavelet coefficients of each of the 16 resolution levels 
(subbands) and from sample values of the original time signal, one computes the 
average energy content of the coefficients at each resolution. There are a total of 
17 subbands (16 wavelet subbands and one approximation subband represented by 
the original signal), from which features are extracted. The ith element of the 
feature vector is given by, 
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where 21 =n , 22 =n , 2
3 2=n ,…, 15

16 2=n  and 16
17 2=n , where jiw ,  is the 

jth coefficient of the ith subband. In this way, from a time signal having 
k2 samples or dimensions, one can extract a feature vector of 1+k  dimensions. 

This technique has been extended for two dimensional signals, for digital images. 

In order to study the effect of the dimension of the input space on the quality of 
the classification as well as to save the morphology of DWT, here we employ a 
different approach. We consider the wavelet coefficients belonging to a given 
subband as a feature vector based on this given resolution. It can be a reasonable 
approach, because the approximated signal representation in the orthogonal 
subspace corresponding to this subband is given by these coefficients. 

In our case, there are two sets of time signals, representing two classes of CBF 
states and only 40 patterns (2 × 20) are at our disposal. Intuitively, it is possible to 
shatter two points by any linear manner in the one-dimensional space and three 
points in two-dimensional space. By analogy, it is possible to shatter N +1 points 
in the N-dimensional space with probability 1. If the patterns to be classified are 
independent and identical distributed, then in the 2 N patterns are linearly 
separable in the N-dimensional space. 

The coefficients of the subbands from 22 =n  up to 3225
6 ==n  as different 

feature vector components will be employed. Fig. 4 shows the maximums of the 
magnitude of the wavelet coefficients of different resolutions, except of those 
belonging to the first (lowest) one. The omitted first wavelet coefficient has a 
magnitude of about 74276, being significantly larger than the other wavelet 
coefficients. 
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Figure 4 

The maximal magnitudes of the wavelet coefficients of different resolutions 

3 Classification 

3.1 Using Radial Basis Function with Artificial Neural 
Networks 

Considering N  patterns of measured CBF signals representing the two 
overlapping classes, we have M

i Rx ∈  feature vectors derived from time series 

samples, where Ni ...1=  are the samples, and M  is the dimension of the 
feature vectors, consisting of several dominant eigenvalues. In our case the 
number of the measurements were 40=N . In order to obtain the minimum size 
of the feature vector which is required to produce reliable results, up to six 
eigenvalues were used. The goal of the classification problem is to assign new, 
previously unseen patterns to their respective classes based on previously known 
examples: in our case to assign input signals to class B or class C. Therefore the 
output of our unsupervised learning algorithm is a set of discrete class labels 
corresponding to the different CBF states.  The labelled patterns corresponding to 
classes B and C, were to be classified. This means, that we are looking for a 
decision function; the output of this estimating function is interpreted as being 
proportional to the probability that the input belongs to the corresponding class. 

To carry out the systematic classification of CBF signals, an Radial Basis 
Function was used. 



3.2 Support Vector Machine (SVM) Classifier 

This kernel based classifier can be trained on any size of training set, while neural 
networks should have so many input nodes as the dimension of the input space 
and need definitely more training patterns than the number of these input nodes. 
Employing kernels, a classification problem can be transferred in a higher 
dimensional space, where the linear separability is more likely. In addition, the 
quality of the classification in any dimension can be measured by the geometric 
margin of the SVM classifier. 

Here we used the feature vectors produced by the wavelet subband analysis. 
Twenty of these vectors represent one CBF state, the other twenty represent the 
other state. As an example let us load the coefficients of the fifth subband, 

1624
5 ==n , for all of the 40 patterns, giving us 40 feature vectors of 

dimension of 16. 

First, these data should be standardized; to be transformed so that their mean is 
zero and their unbiased estimate of variance is unity. 

Let us employ Gaussian kernel, with parameter β = 5, 

K[u_,v_]:=Exp[-� (u-v).(u-v)] (5) 

Let the value for the control parameter of regularization be 100=c . 

To carry out the training of the support vector classifier, we shall employ the 
algorithm embedded into the function, SupportVectorClassifier developed for 
Mathematica. 

A sample pattern can be considered as support vector, if its contribution (its 
weighting coefficient iα ) to the decision function is greater than 1% of the 
maximal contribution. 

The geometric margin, γ can indicate the quality of the classification, greater the γ, 
more reliable the classification is, 
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These computations were carried out for different feature vectors based on the 
coefficients of the different subbands. 



4 Results 

Columns 1 and 2 of Table 1 show the result of the ANN classification results 
using eigenvalue-based feature extraction. It can be clearly seen from the 
numbers, that it makes no sense to use more than 6 eigenvalues. Comparing 
different feature extraction methods and classification algorithms by taking 
different numbers of eigenvalues as feature vectors, the results are very close to 
that obtained when using wavelet decomposition, see columns 3 and 4 of Table 3. 
In any case, it is clear, that a merely two element feature vector is insufficient for 
reliable results; at least a five element feature vector was needed to differentiate 
class B from class C in the case of ANN classification with eigenvalue-based 
feature extraction, while in the case of the SVM classification with wavelet-based 
feature extraction, at least 8-dimensional feature vector should be used. 

Table I 
Misclassification rate 

Number of eigen-
values 

Eigenvalue feature 
extraction & ANN 
classification, 
misclassifi-cation 
number 

Wavelet 
coefficient 
(subband level) 

Wavelet feature 
extraction & SVM 
classifi-cation, 
misclassifi-cation 
number 

6 0 16 (5) 0 
5 0 8 (4) 0 
4 3 4 (3) 0 
3 3 - - 
2 6 2 (2) 4 

Conclusions 

Two feature extraction and classification methods are presented. First an Artificial 
Neural Network using a radial based function, combined with a spectral matrix 
based feature extraction was shown. Secondly, a Support Vector Machine 
Classifier with wavelet subband analysis as feature extraction method was 
employed. The two mehods can successfully differentiate cerebral blood flow 
classes B and C, and although the approaches described in this paper are very 
different, they still produced comparable results for this classification problem. 
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