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Abstract: As a plausible alternative of certain sophisticated soft computing approaches 
trying to identify complete and static system models, a simple adaptive controller is 
outlined that creates only a temporal model. This model can be built up and maintained 
step-by-step on the basis of slowly fading information by the use of simple updating rules 
consisting of finite algebraic steps of lucid geometric interpretation. The method may be 
used for filling in the lookup tables or rule bases of the above representations 
experimentally. The method is tested by the use of a simple dynamic system as a typical 
paradigm via simulation. 



1 Introduction 

Though strictly stable controller designs already have been proposed on the basis 
of infinite order models [1, 2], too, the necessary mathematical deductions are 
very complicated and their complexity strongly increases with the increase in 
dimensionality. Apart from certain research efforts as [3, 4], the control of 
infinite-order physical systems are commonly based on finite order 
approximations in which the infinite modes are neglected for ease of design as e.g. 
in [5, 6]. These finite order models lead to handling discrete time-series only. 

Another interesting class of physical systems are the fractional order ones 
described by expressions containing non integer ( ) ββ dttud  derivatives that can 
also be approximated and represented by finite time-series. Fractional order 
derivatives are defined in various different manners, e.g. [7, 8]. A practically 
useful definition was given by Caputo [9] in which the full 1st order derivative is 
causally reintegrated by the use of a kernel function as in (1). It has slowly 
forgetting nature while its singularity in τ=t enhances the relative weight of the 
contributions of the τ≅<t instants. 
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Its reasonable numerical approximation can be obtained by dividing the region of 
integration into small disjoint boxes of length δ over which u'(t) is supposed to be 
approximately constant. In this case the singular integrand in the 1st box can be 
calculated analytically, too. Furthermore, by limiting the horizon of the 
retrospective integration it is obtained that 
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Expression (2) just corresponds to the expected time series representation. 

Another important control class is the set of non-stationary stochastic processes in 
which some deterministic response to an external input and a stationary stochastic 
process are superimposed. A discrete time model can be formulated in the form of 
a difference equation with an external input {uk} that is usually considered to be 
known (Autoregressive Moving Average Model with external input - ARMAX) 
[10]: 
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text In the so-called Takagi-Sugeno fuzzy models the consequent parts are 
expressed by analytical expressions similar to (3). The TS fuzzy controllers use 
some linear combinations of the (3)-type rules in which the coefficients depend on 



the antecedents. With the help of such Takagi-Sugeno fuzzy IF-THEN rules 
sufficient conditions to check the stability of fuzzy control systems are now 
available. These schemes are based on the stability theory of interval matrices and 
those of the Lyapunov approach [11]. 

It was already observed that the fuzzy controller stability conditions can be 
rewritten in form of Linear Matrix Inequalities (LMIs) [12, 13]. LMIs can be 
efficiently solved numerically by solving very complex equations for a positive 
definite solution [14]. 

Neuro-fuzzy systems provide the fuzzy systems with automatic tuning systems 
using a Neural Network (NN) as a tool. (The adaptive neuro-fuzzy inference 
systems are included in this classification.) The Adaptive Neuro-Fuzzy Inference 
System (ANFIS) is a cross between an artificial neural network and a Fuzzy 
Inference System (FIS) [11, 15, 16, 17]. The adaptive network can be a multi-
layer feed-forward network in which each node (neuron) performs a particular 
function on incoming signals. Based on the ability of an ANFIS to learn from 
training data, it is possible to create an ANFIS structure from an extremely limited 
mathematical representation of the system. The ANFIS system generated by the 
fuzzy toolbox available in MATLAB allows the generation of a standard Sugeno 
style fuzzy inference system or a fuzzy inference system based on sub-clustering 
of the data [18]. 

Radial Basis Function Networks (RBFNs) provide an attractive alternative to the 
standard Feedforward Networks using backpropagation learning technique [19]. 
The linear weights associated with the output layer can be treated separately from 
the hidden layer neurons. As the hidden layer weights are adjusted through a 
nonlinear optimization, output layer weights are adjusted through linear 
optimization [11]. In fact the nodes of a RBFN represent “fuzzified” or “blurred” 
regions which correspond to the well defined antecedent sets of a fuzzy controller. 
The neuron’s firing achieves its maximum at the centre of the region while its 
strength decreases with the distance from the center according to some Gaussian 
function (various distance measures can also be used). Evolutionary methods as 
e.g. the Particle Swarm Optimization Method that realizes stochastic random 
search in a multi-dimensional optimization space [20, 21] therefore may also be 
combined with them. Further interesting possibility is the application of the Self-
Organizing Fuzzy Logic Controller (SOLFC) [22]. In the case of certain problem 
classes similarity relations can also be observed and utilized to simplify the design 
process [23]. 

A significant common feature of the above approaches is that they try to develop a 
“complete” soft computing based model of the system to be controlled. This 
naturally makes the question arise whether it is always reasonable to try to identify 
a “complete” model. As a plausible alternative simple adaptive controllers can be 
imagined that do not wish to create a complete model. Instead of that on the basis 
of slowly fading recent information a more or less temporal model can be 



constructed and updated step by step by the use of simple updating rules 
consisting of finite algebraic steps of lucid geometric interpretation. In the sequel 
this simple approach is detailed and illustrated via simulation results. 

2 Simple Geometric Approach for Dynamic Systems 

Consider a simple nonlinear causal Single Input – Single Output (SISO) system 
described by the equation: 
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in which f(t) represents the external driving forces to be utilized for controlling 
purposes. Let us suppose that the time-derivatives can be approached by certain 
finite element approach using time-resolution δt. To numerically estimate the nth 
order time-derivatives at least (n+1) discrete values has to be taken into account 
via considering their linear combination as 
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in which the cn coefficients depend on δt and can be chosen in various manners. 
We also note that the number of the coefficients may be somewhat greater that 
(n+1), e.g. in the case of computing the central first derivatives we may use 3 
points, too. Via rearranging (4) and using (5) the following ambiguous 
representation can be obtained: 

( ) ( ) ( ) ( ) ( )( )ttftntyttyttyty δδδδ −−−−Φ≅ ,,...,2,  (6) 

in which the actually used values are concentrated in the vicinity of the values of 
time t. Supposing that the array of the values Yf:=[y(t-δt),…, y(t-nδt), f(t-δt)]T≠0 
(6) can be replaced by a scalar product in ambiguous manner by an array G as 

( ) ( ) ( )ttty f
T YG=  (7) 

in which both the angle between G and Yf and the absolute value of G are not well 
defined. If the nth derivative of y(t) is directly measurable then similar ambiguous 
approximation can be constructed for y(n)(t) as 

( ) ( ) ( )ttty f
Tn Yg=)( . (8) 

Let us suppose that on the basis of some rough initial or preliminary model we can 
compute the appropriate control action f(t) and can store the y(t) values, too. It is 
evident that in the case of a time-invariant linear system g does not depend on t, 
therefore collecting sufficient information coded in the form of (8) leads to the 
system of linear equations that belong to the constant array g as 
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Equation (9) has very simple and lucid geometric interpretation: the constant 
vector g is represented by time-varying or “floating” system of basis vectors Yf(t-
nδt) (n=1,…,M). If this set is linearly independent g can be reproduced as the 
linear combination of these vectors as 
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In (10) it is naturally supposed that to a constant g for a floating system of basis 
vectors a floating or time-varying system of the μs(t) coefficients belongs in a 
special manner: together they have to provide a constant vector. No let us suppose 
that we have two vectors a and b having known dot product with g. Let us find the 
component of b in the orthogonal subspace of a in the form of b⊥=b+λa: 
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Due to the linear property of the dot or scalar product the dot product of b⊥ with g 
can also be computed as 

agbgbg TTT λ+=⊥ . (12) 

Now let us apply the following algorithm that is similar to the Gram-Schmidt 
orthogonalization with the exception of normalizing the vectors: remove the 
components in the direction of Yf(t-δt) from Yf(t-2δt),…, Yf(t-Mδt) with the 
method given in (11). Then the new set indexed with 2,3,…M-1 will be in the 
orthogonal subspace of Yf(t-δt). Then take the 2nd vector of the remaining set and 
subtract the components of the remaining ones in its direction, etc. while tracing 
the variation of the dot products according to (12). (To avoid numerical 
difficulties the components in the direction of very small vectors need no to be 
subtracted.) Furthermore, since in the case of linear systems it is just enough to 
obtain sufficient information on the independent directions only, the 
approximately same direction of vectors a and b can be stated if 
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in which ε1 and ε2 are small positive numbers. Otherwise these vectors have 
essentially different directions. 

Now let use suppose that we continue the systematic observation and obtain 
further information on g in the form of (8) as 
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Together with the information coded in (9) (14) is redundant but free of 
contradiction if g is exactly constant. In this case either (14) or one of the vectors 
in (9) can be dropped, replaced with the 1st vector in the set in (9), and the 
orthogonalization algorithm can be repeated. As a result the same constant g must 
be obtained by the use of this new set of basis vectors. 

Now let us suppose that our system is linear but not time-invariant! In this case 
(9) and (14) are rather controversial than redundant because these vectors do not 
belong exactly to the same g since they were obtained from measurements taken 
in different time instances. A plausible and lucid method of contradiction 
resolution may be finding the vector in the closest direction of the last one in the 
sense of (13) since the remaining vectors convey less relevant information on the 
system’s behavior in this direction. This vector can be omitted in the system in (9) 
and it can be replaced by the new information conveyed by (14). Then by 
executing the orthogonalization algorithm on the remaining set the obsolete 
information regarding the new direction can be removed and replaced by the fresh 
information. [Since the addition in (10) is commutative, in practice the first 
column of the original set can be put in the place of the dropped vector, and the 
new one can be placed into the 1st place.] 

Finally let us suppose that our system is neither time-invariant nor linear! In this 
case not only the direction but the absolute values of the vectors also influence the 
behavior of the system. In this case the old vector closest to the new one in the 
sense of a norm can be dropped and replaced by the new one because the 
information mainly conveyed by it is refreshed. 

In the possession of some prescribed control strategy formulating the desired 
trajectory tracking with asymptotic convergence continuous tracking error is 
expected and the array g in (10) can be used for calculating the necessary control 
action instead of the rough initial model as 
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To evade numerical problems instead of 1/x the approximation 
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can be used with a very small positive ε3. 

To illustrate the above idea consider the forced vibration of a stable, linear, time-
invariant, oscillation-free system y’’(t)=-Dy’(t)-P(t)+f(t) identified by 3 points, 



i.e. in which g1, g2, g3 correspond to the y coordinates and g4 belongs to f of unit 
amplitude sinusoidal excitation (Fig. 1). 

a b  

c d  

Figure 1 
Typical results for identifying a 2nd order system using three y points for identification: a: the forced 
oscillation, b: variation of g1, c: variation of g4, d: the correlation between the actual acceleration and 

its estimation 

Fig. 1 reveals that the variation of g is practically negligible. For instance g1≅-
2.665×1013 (this value corresponds to the 0 line of graph b while the maximum of 
its variation is about 12×10-9. Graph c can be interpreted in similar manner, and 
similar negligible variations were found for g2, and g3. The identified model based 
acceleration estimation is very accurate according to the expectations. 

In the sequel this idea is used for the special control of a cart-pendulum system in 
which the pendulum’s axle is not directly driven: its state can be manipulated due 
to the nonlinear coupling between the linear and the rotational degrees of freedom 
by the drive linearly moving the cart. 

3 The Model of the Cart and Pendulum System 

On the basis of the Euler-Lagrange equations the equation of motion of the 
pendulum’s angle ϕ is given as the function of the mass of the cart and the 
pendulum M=1.096 kg and m=0.109 kg, respectively, the length and the rotational 
angle of the pendulum with respect to the upper vertical direction (clockwisely) 
L=0.25 m and ϕ [rad]. Variable x [m] denotes the horizontal translation of the 
cart+pendulum system in the right direction, b=0.1 N/(m/s) and f=0.00218 
kg×m2/s are the viscous friction coefficients, and I=0.0034 kg×m2 denotes the 



momentum of the arm of the pendulum, and Q1≡f(t) denotes the linear force 
moving the cart in the horizontal direction: 
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It is evident that about ϕ =0 d2ϕ /dt2 is decreasing function of Q1 which is a kind 
of specialty of this system. In the forthcoming simulations the x variable was 
treated as an internal degree of freedom without any interest, and the primitive 
model 1505.01 +×−= ϕ&&Q  was used in the beginning of the control. 

4 Simulation Results 

Fig. 2 describes the trajectory- and the phase trajectory tracking of the rough 
model based and the 3 Y points based adaptive control. It is evident that the 
adaptive approach outlined works well in the control of this non-linear and time-
variant system (from the point of view of the ϕ coordinate time-invariance 
disappears due to the variation of dx/dt that is the velocity of the coupled internal 
degree of freedom). 

a b  

c d  

Figure 2 
The trajectory tracking of the rough model based non-adaptive and the 3 Y points based adaptive 

control (a and b), and the appropriate phase trajectories (c and d) 

To reveal some details of the operation of the adaptive control Fig. 3 describes the 
trajectory tracking error, the exerted force, the prediction correlation, and the norm 
of the basis vectors of the identification in the case of the 3 Y points based 
adaptive control. It is evident that the prediction with δt=1 ms is not so extremely 



precise as in the case of a time-invariant linear system, however, it seems to lead 
to acceptable precision and also evades hectic variation of the control signal, i.e. 
the exerted force. It also reveals that normally the system has a “dominant” basis 
vector that – due to the operation of the algorithm applied – normally stands in the 
1st place. The remaining basis vectors that seem to be responsible for minor 
corrections in the prediction have small components. As it was expected their little 
norm does not cause numerical problems in the calculations. 

a b  

c d  

Figure 3 
The trajectory tracking error (a), the exerted force (b), the prediction correlation (c), and the norm of 

the basis vectors of the identification (d) in the case of the 3 Y points based adaptive control 

 
Figure 4 

The trajectory tracking and the excitation function generated by the “alternative” controller 

To reveal the significance of maintaining the partly obsolete information an 
“alternative” adaptive controller was developed in which [yk,(yk-yk-1)/δt,f(t)] were 
associated with g1, g2, g3, and the “obsolete” information was not taken into 
account at all, i.e. the vector g that was identified in cycle i was used for 
prediction in cycle i+1. The lower quality of trajectory tracking as well as the 
bang-bang type control signal covered by a smooth hull in Fig. 4 reveals the 
superiority and necessity of gradually letting the “obsolete” information fade. 



1 1’  

2 2’  

4 4’  

Figure 5 
The trajectory tracking error in the case of the adaptive controller designed for the maximal index of g 

(1, 2, and 4) without noise in the exerted force (the numbers without ‘), and with even distribution 
noise (the numbers with ‘) 

The ambiguity and noise sensitivity of the proposed method is also an interesting 
question. For this purpose the control calculating with 1, 2, and 4 yk points were 
investigated with noiseless and noisy exerted force f. For the noise even 
distribution was chosen in the [-5,+5] N interval. The results are displayed in Fig. 
5. It can be seen that the bigger the dimensions of the Yf vectors are the less 
precise control can be achieved. Fig. 6 displays the prediction correlation for the 
appropriate cases of Fig. 5. It does not seem to reveal significant differences. 

Conclusions 

In this paper, as a plausible alternative of certain sophisticated soft computing 
approaches trying to identify “complete” system models, a simple adaptive 
controller dealing with continuously updated temporal model was investigated via 
simulation. This model utilizes the slowly fading information via applying finite 
algebraic steps of lucid geometric interpretation based on the Gram-Schmidt 
orthogonalization algorithm. The simulation investigations indicated that this 
approach can be useful. Its great advantage is simplicity, limited number of 
algebraic operations and lucid interpretation. In contrast to the mathematically far 



more intricate solutions based on the Lyapunov technique normally guaranteeing 
Lyapunov stability without making it possible to prescribe dynamic details of 
trajectory tracking this simple approach makes it possible to prescribe arbitrary 
error relaxation by the use of simple kinematic terms. Neither complicated 
evolutionary computation or LMIs based optimization seem to be necessary for its 
use. The method may be used for filling in the lookup tables or rule bases of the 
other representations experimentally, too. Further investigations concerning the 
operation of this approach in the cases of fractional order linear or nonlinear 
systems seem to be expedient in the future. 

1 1’  

2 2’  

4 4’  

Figure 6 
The prediction correlation in the case of the adaptive controller designed for the maximal index of g (1, 

2, and 4) without noise in the exerted force (the numbers without ‘), and with even distribution noise 
(the numbers with ‘) 
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