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Abstract: Multiprocessor systems are possible to use for parallel computation related to 
association and classification tasks. For efficient solution above described tasks are used 
neural networks in which computation is processed in sense of data-driven executing. 
Similar model is used in data flow computers also. This article describes abilities of 
transformation neural networks to computation model applied in Neural DF data flow 
system assigned for solution of classification tasks with neural networks. 
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1 Introduction 

Multiprocessor systems are possible to use for parallel computation related to 
association and classification tasks. For efficient solution above described tasks 
are used neural networks in which computation is running in sense of data-driven 
executing. Processor/neuron executes given instruction as soon as there are all 
operands available. In data flow systems processors for execution single 
arithmetic, logic and control operations use message sending mechanism, 
interruption and synchronization signal and for exchanging those information is 
used shared memory space. Communication/synchronization problems which can 
be seen in multiprocessor systems during execution parallel tasks come from the 
physical structure (topology of network) of systems. It is possible to remove this 
problem by transformation task into Data flow graph. (Data Flow Graph, 
DFG)[1]. 

Utilization of implicit paralelism in neural networks, pipelined pattern processing 
in learning phase of network described in chapters 2 and 3 of this arcticle is part of 
research of the DF KPI system developed on the Department of computers and 
informatics, Faculty of Electrical Engineering and Informatics on Technical 
University of Košice, Slovak Republic supported by grand project: Simulation 
parallel architectures of computer systems, methods of its specification, 



developing technologies and implementation (VEGA 1/1064/04). Next chapters 
deal with parallelism in computation of neural networks, ability to increase 
inherent parallelism in networks by implementation pipelined processing of 
pattern in learning phase, design of pipelined units and conception of direct 
operands matching in the Neural DF architecture adapted to classification tasks. 

2 Computation Parallelism in Neural Networks 

In spite of fact that the neural networks dispose with strong inherent parallelism 
for implementation of artificial neural systems, sequential computers are still used 
for it. In [2] were designed two restrictions of algorithm formulation for the neural 
networks with plan of increasing inherent parallelism. These restrictions are: 

1 No global „programming language“ control constructs. All components 
should be self-controlling. 

2 No random access memory. Data is either found in the state of the 
components or in explicit communication between them. 

Suitable computer systems which match these restrictions are the computer 
systems which consist from list of interconnected components with the 
distribution control and the memory for a data to which data flow computers are 
assigned [3]. 

Characteristic property of data flow computer is that DF program instructions wait 
passive for arrival some combination of the arguments, availability of which is 
organized as data stream in sense of data-driven. Waiting interval of instruction 
for approaching operands represent select phase during which the computing 
resources are allocated. Basis of DF computing model is the mapping tasks (Fig. 
1) to processor's elements (CEs – Computing Elements). 

In general the task is necessary to divide into smaller communication processes 
which are represented by the data flow program [4]. DF computing model (DF 
program) enables to detect parallelism on the lowest level, computer instructions 
(fine grained parallelism; ILP – Instruction-level Parallel) and provides effective 
mechanism to utilize inherent parallelism hidden in artificial neural networks. 
Scheduling of computing is based on availability of the data, similar as it is in 
neural networks. Data flow computing model or DF program is represented by the 
DFG in which nodes represent asynchronous active members (operators, 
instructions, tasks) and edges represent communication paths for transferring and 
routing messages (data packages, operands), generated by nodes during their 
activation or received from external enviroment during computation initialization. 
The carrier information about state of computation is activation token displayed 
on node's edges of DFG by solid ring. 
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Tasks mapping to CEs 

Its position on input node's edges (operators) requires availability of operands and 
permition to define executive instruction. Placement of activation token on output 
edge of node requires availability of the result operation defined by operator of 
executed instruction [1]. As DFG represent universal paradigm for description a 
flow in given system, formal mapping of neural networks on DFG is possible to 
use on implementation of neural networks based on various computer architecture. 
Data flow graph is oriented graph [5]. Its nodes represent instructions and edges 
interconnect nodes represent operands of these instructions. Instruction can be 
executed if there are available all input tokens on its input edge of node so if all 
operands are available. 

Generic structure of neural networks is possible to describe with theory of graph. 
Neuron can be seen as node and synaptic connection among neurons as edges of 
the graph. States of graph represent information coded into neural network into 
form of outputs, weights, threshold values. Definitions are expressed in [5] shows 
that there is strong dependence within DFG and neural networks. 

During mapping neural networks into DFG it is necessary to take in reflection 
following facts. At first we have to map neural network into acyclic DFG. 

Every time when new process of learning starts it is necessary to construct new 
DFG (Fig. 2b). Second, we can use Batch Mode learning for better utilization of 
inherent parallelism in neural network. In this case pattern enters into network 
synchrony and at the end of every learning process are the weights updated for 
next learning. (Fig. 2c) 
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(a) Multi-layer neural network trained in mode (b) Pattern (c) Batch 

3 Implicit Parallelism in Neural Networks 

The basic equations for error back-propagation for on-line learning, using a 
logistic activation function and a momentum term, are formulated as shown 
below: 
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Where oj is the output of neuron j; 

 δj is the back propagated error at neuron j; 



 tj is the "training value" for output neuron j; 

 wkj (t) is the synaptic weight from neuron j to neuron k at time t; 

 η is the learning rate; 

 α is the momentum term. 

Additional, define sequence of values oj for every neuron in case of watching this 
neuron. Computing consists of two phases: forward phase, during which are 
computed values oj and backward phase when are computed values δj. These two 
phases are expressed implicit, through data dependency. Values oj depend on 
values wjk, which depend on values δj which depend on values oj (for all neurons j 
and k). 

Formal networks are usually organized into layers in which in general do not exist 
synaptic connection among elements in layer. Number of layers is not usually very 
big, in general 3 or 4, but in some cases as network with time back-propagation, 
numbers of layers can increase dramatically. 

While every layer is dependent on its predecessor layer in the forward phase and 
its successor layer in the backward phase, all neurons on layer can be processed in 
parallel and because there does not exist data dependency among neurons on the 
same layer. The layers of neural network can be processed in a pipelining also. 

As soon as results from first layer is accessible in second step of pipelined 
execution, output of second layer can be computed on the output of second layer 
and first part of pipelined executing can simultaneously compute output of first 
layer for next input pattern. Advantage of pipelined execution is based on that 
pipelining reduces number of messages and increases efficient of the whole 
network. In the backward phase is possible to compute and modify weights 
synapse in parallel and pipelined execution can be applied within network layers. 

Data dependency resulted from the basic equations obstruct implementation of 
data pipelining executing in both phases. We have to consider the fact that every 
calculation of backward phase depends on result of oj computed in the forward 
phase. 

Application of pipelined executing in the forward phase leads into the lack of oj 
values in every calculation of new oj. 

Data dependency results from the basic equations obstruct implementation of 
pipelined executing in both phases together. In principle, this problem is 
connected through strong link between backward and forward phase. 

It is evident that synchronization between layer j in forward phase and same layer 
in backward phase can not be simply eliminated. Come out from the fact that error 
signals are used for deriving new weights and these new weights are used 
immediately during computing new error signals, it is not necessary that results 
from backward phase are known before beginning of new forward phase. 



Error signal computed in backward phase are used in computation of the output 
value in backward phase. Output value computed for one input pattern can be used 
in computation of error signal related with this pattern. 

Presented synchronization problem can be overcome by modification of neuron in 
computation model. Every neuron needs to know its output computed in forward 
phase for weights modification in backward phase. In the modified model, every 
neuron is connected to stack for saving computed output values in the forward 
phase. 

After weight calculation of all input synapses, neuron computes its output value 
based on its activation function. In the backward phase, neuron based on weight 
sum all input error values computes new synapse weights for its input applying the 
learning function. 

Instead of using straight value oj, values are saved into stack from which are 
removed when error function gets particular error value computed in backward 
phase. 

Minimal capacity of neuron stack is designed by distance between given neuron 
and the output layer of the network. This distance of neuron is called the deep of 
neuron. The deep d of output neuron is equal to 0. Neurons of input layer have 
maximal deep dmax equal to deep of whole network. For hidden neuron, deep of 
neuron is equal to deep of post-neuron +1. Predict that neuron has deep d. Its 
output considering to any input pattern spreads on neurons output in d steps. 
Backward phase requires next d steps to spread error back on the input. For 
capacity c of neuron's stack is valid c = 2d. 

4 Architecture Model of Neural DF 

Based on the knowledge introduced in previous chapters within research of 
distributed / parallel systems [9] for classification tasks on the Department of 
computers and informatics, Technical University of Košice SR was developed 
Neural DF architecture. The Neural DF is designed as dynamic system with direct 
matching of operands [8] and is modified to solve classification tasks with neural 
network, support pipelined processing of pattern in learning phase and living 
phase of neural network. System level of architecture includes huge number of 
operation units which are mapped on single layers of neural network. 
Combination of local CF model (calculation of activation values is done 
sequencely) with global DF model enables to organize parallel implementation of 
neural network effective. Architecture model of Neural DF is part of complex DF 
system which includes supported components computing environment of DF for 
realization defined by application learning. 
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Figure 3 
Neural DF architecture 

Structure organization of Neural DF architecture model consists from following 
components (Fig. 3). 

• CP – Coordinating Processors are assigned to control, coordinating and 
processing instruction of DF program. Based on presence of the operands 

• availability of operands which come on the input port CP.DI from 
coordinating processor from it's output port CP.DO, from the output ports 
CP.DO other CP through interconnected network, from data queue DQU and 
from frame memory FS. 

• DQU – Data Queue Unit assigned for saving activation tokens (DT – data 
tokens), represent operands which are waiting for matching during program 
executing, 

• IS – Instruction Store, instruction memory (DFI) DF program in form of 
graph DF (DFG), 

• FS – Frame Store memory of matching vectors by which  CP locates 
presence of the operands for executing operation defined by operator (node) 
in DFG. Format of matching vector in FS is 〈FS〉 ::= 〈AF〉〈V〉, where AF is 
presence sign of operand (Affiliation Flag) and 〈V〉 is value of this operand 
(DT). 



Supported components of DF system are needed for construction real computing 
environment. In this architecture is formed by: 

• HOST – main computer for executing standard function of computer system, 

• IT – Information Technology unit for creating specialized application 
environment (virtual reality, diagnostic, e-learning), 

• Specialized I/O – for fast direct input/output into DF module (standard I/O 
are realized by main computer). 

Structure organization of CP is designed as dynamic multi-functional system [7] 
(Fig. 4) which consists from two pipelined preprocessor units (Fig. 4, Fig. 5), 
execution unit and communication unit. Preprocessor units have in common 
separation forward and backward phase of learning network with BP algorithm. 
Execution unit concerns about processing of given instruction and communication 
unit takes part in sending result into the communication network. 
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Structure of CP 

This model uses mechanism of pipelined processing [6], on edges (represent 
synaptic connection) DFG is represented as DF program, at same time more than 
one token (represents weight) can be on edges, this is dynamic data flow 
computer. One of the problem of this model is efficient operand matching. 
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Pipelined levels of preprocessor unit 

5 Operands Matching 

Program for implementation in data flow environment is compiled into assembler 
(machine language) which is mostly represented in form of DF graph. The Neural 
DF architecture support DFG processing. Information carrier about state of 
computing is activation token represented on edges of nodes DFG in form of solid 
circle. Its placing on input edges of nodes (operands) express operands presence 
and define executable instruction, instruction which has tokens on output node’s 
edge and express presence of result operation defined by operator of executed 
instruction. 

Operand has following format: 

:: [ ]DT P D MVB DST IX= , (5) 

where P is operator priority; :: ,D T V=  input data; T data type; V data value; 
MVB is base address of matching vector MV in frame memory.; DST operand’s 
destination ; IX index of item in matching vector. 

DF graph is processed by rules of execution (instruction is executable when all 
operands are accessible) and data flow program instruction activations (instruction 
is fireable when resources for its activation are disposal). 

The most significant step, coming from dynamic model DF is direct operand 
matching. Concept of direct operands matching resides in elimination computing 
expensive process connected with associative searching operands. Operand 
matching is necessary with operands which enter into double-input and multi-



input operands. In scheme of direct operands matching items in frame memory FS 
are allocated dynamically for every token generated during DFG processing. 
Actual position of item in FS is determinated with program compilation, while 
location of FS is determinated after running DF program. In scheme of direct 
operands matching every calculation is possible to describe by pointer to 
instruction IP and with pointer to matching vector in frame memory (MVB). Pair 
<MVB, IP> is part of activation token header. Typical task is searching operand’s 
pair in frame memory. Searching same labeled tokens is task of matching 
function. After coordination processor CP gets operand, based on index IX and 
matching function, system determinate if there is partner of operand in frame 
memory. If there is not searched partner, operand is saved into matching vector 
determinated by base address of operand MVB into item by index IX. 

Operands matching process [8] is affected on its input and output by execution 
process and by result generation. Program compiler to DFG and forward phase 
enables to detect and eliminate redundant computation, changing order of token 
processing, control is possible to define as transaction of activation tokens on 
DFG edges (Fig. 6) between operator „generating“ (P- producer) and operand 
„consumer“ (K- consumer) token. 

Producer produces token which are received be u-single input or v-double input. 
In the first case there does not come to activation matching function in second 
case but yes. Process of operands matching is controlled by coordination 
processor CP. 
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Figure 6 
Operands matching process 

Coordination processor represents dynamic pipelined system which enables to go 
through states (L – load, M – matching, C – copy, F – fetch, O - operate) pipelined 
unit in different order. Transition between states during control are described on 
Fig. 7, where are control signals also, CP_free – indicates busy or availability of 
CP, Get DQ – reading token from DQU, Put DQ – record token into DQU; Init – 
initialization of pipelined stages. 
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Control diagram of matching operands 

In parallel implementation of microprogram for matching operands between single 
stages of CP are inserted interstages memories with following specification: 

• Between stage L a M → LMP 

• Between stage M a F → MFP 

• Between stage F a O → FOP 

If partner’s operand is available (affiliation flag AF = 1) is its position recorded in 
MV and this determines its place in FS, both are loaded and processed in 
elementary unit (PEU). Result of operation (token) is accessible for processing in 
next operator, if CP is not busy with other computation. If CP is busy than 
operator is sent through interconnected network to another available CP. If there is 
not available CP, token is saved in DQU. State OPERATE can be divided into 
several smaller steps. To do this CP uses state COPY. 

Conclusions 

Base model of artificial neural network has several features which require massive 
parallel implementation. These features include high parallel operation, simple 
execution unit (neuron), local memory for neuron with small capacity (shared 
memory) and error tolerance of connected neurons. The target architecture for 
artificial neural network implementation can be high parallel computer systems 
with simple execution unit. However there exists strong analogy between neural 
networks and Data Flow graphs (mainly control of computing in sense data-
driven) this architecture represents suitable platform for implementation of neural 
networks. Intention of releasing and formulation synchronization problem in 
learning process of neural network was classic model of neuron extended by the 
stack which enables to minimize data dependencies between forward and 
backward phase. This model enables to establish pipelined data processing with 
utilization of draft-grained parallelism resulting from multi-layer forward network 
architecture. Pipelined processing in the Neural DF architecture developed on 



Department of computers and informatics is attractive alternative to fine-grained 
parallelism every time when number of layers in the network is approximately the 
same as number of processors (in cases of small parallel systems) and any time 
when number of layers is significant. 

–––––––––––––––––––––––––––––––––––––– 

Supported by VEGA project No. 1/1064/04 

References 

[1] Jelšina M. et al: Architecture of Data Flow KPI (in Slovak). Elfa s.r.o., 
2004 Košice. ISBN 80-89066-86-0 

[2] Moore, R.; Klauer, B.; Waldschmidt, K.: What computer architecture can 
learn from computational intelligence—and vice versa. In 23rd Euromicro 
Conference, Budapest, Hungary, Sept. 1997 

[3] Vokorokos, L.: Data Flow computer principles (in Slovak). Copycenter, 
s.r.o., Košice, 2002, ISBN 80-7099-824-5 

[4] Heath, J. R.: „Development, Analysis, and Verifiation of a Parallel Hybrid 
Dataflow Computer Architectural Framework and Associated Load-
Balancing Strategies and Algorithms via Parallel Simulation“ ProQuest 
Science Journals, Jul 1997; 69, 1, pp. 7 

[5] Yuceturk, A. C.; Klauer, B.; Zickenheiner, S.; Moore, R.; Waldshmidt K.: 
Mapping of Neural Networks onto Data Flow Graphs. Proceedings of the 
22nd EUROMICRO Conference, 1996, ISSN 089-6503/96 

[6] Jelšina Milan, Šuba Stanislav, Dzuriak Miloš: Parallel Control Unit of the 
Data Flow Pipeline Processors, Proceedings of the sixth international 
scientific conference Electronic Computers and Informatics ECI 2004, 
Košice-Herľany, September 22-24, 2004, Košice, VIENALA Press, 2004, 
55, pp. 332-337, ISBN 80-8073-150-0 

[7] Jelšina Milan, Ádám Norbert: Multipipelined and Multithreaded 
Architectures Approache – Over View of Data Flow Architectures, Proc. of 
the 6th international scientific conference – ECI´2004, Košice-Herľany, 
September 22-24, Košice, VIENALA Press, 2004, pp. 241-246, ISBN 80-
8073-150-0 

[8] Vokorokos, L., Ádám, N., Petrík, S.: Operators Matching In Dynamic Data 
Flow Architectures. In: 2th International Conference on Computational 
Cybernetics (ICCC) 2004, August 30 – September 1, 2004, Vienna, 
Austria, pp. 77-81, ISBN 3-902463-02-03 

[9] Vokorokos, L., Petrík, S.: Proposed Parallel and Distributed Architectures 
for Behavioral Animation. In: 9th IEEE International Conference on 
Intelligent Engineering Systems (INES) 2005, Cruising on Mediterranean 
Sea, September 16-19, 2005, pp. 199-203, ISBN 0-7803-9474-7 


