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Abstract: The paper's aim is to make a step forward in understanding and modelling 
cognitive systems in their interaction with the physical environment in the process of self-
organization. In this regard, the information is conceived imbedded in physics reality and 
described by the conception of entropy. The concept of Shannon entropy, algorithmic 
randomness, and Fisher information is used as a tool in analysing the cognitive systems 
capacity of observation, measurement and acquiring knowledge upon the environmental 
universe. 
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1 The Controversy 
There is an opinion that the term entropy has different meanings in Shannon and 
Kolmogorov-Chaitin (K-C) information theories. This is related with the problem 
of increasing information in self-evolutionary system. In Shannon theory, entropy 
is randomness introduced by noise along the communication channel from source 
to destination. Noise can not increase the information content. The only source of 
information is provided by the transmitter, which tries to protect it against the 
influence of noise by coding techniques. In K-C information theory, the 
information is defined in terms of a nonstatistical definition of randomness, 
without considering the information origin. A series of numbers is random if it is 
patternless or incompressible, i.e. it cannot be found a shorter algorithm for 
specifying it than the length of the series itself. Therefore, a random series 
contains more information than a regular series, which can be specified by a much 
shorter algorithm. 

Adding randomness to a system adds noise to the system, and by Shannon theory 
that means the information content of the system decreases. On the contrary, by 
K-C theory, randomness increases the information content of a system. If the term 
entropy means the same thing in both Shannon and K-C theory, then one can take 
a measure of information content of a system, say DNA, and then argue that on 
the basis of Shannon theory the information content of the system cannot increase, 
making evolution impossible [1]. 



A proposed solution considered that entropy in Shannon theory has a different 
meaning than in K-C theory. K-C information theory says nothing about how 
information content can change by a natural process, and Shannon theory applies 
to a very limited field where the transmitter is upper-bound on information 
content. The paper will discuss this issue. 

2 Entropy Defined 
Shannon defined information in terms of the probabilities of the discrete symbol 
types used in a string. The average quantity of information conveyed by one 
symbol in a string is Σipilogpi, where pi is the probability of the ith symbol type in 
the set of available symbol types. In case that the probabilities of all members of 
the set of symbol types are equal for every location in a string, the information 
conveyed by the string is a theoretical maximum. The sequence of symbols is 
random in the sense that the recipient does not know beforehand which of the 
outcomes will be realized. According to Shannon’s definition of quantity of 
information, the fewer the chances that a given message will be transmitted the 
higher one should express quantitatively the information obtained in the 
realization of that outcome. Therefore, the quantity of information contained in a 
message increases as its probability decreases. If the message consists of a series 
of binary digits, the quantity of information reaches a maximum when the 
sequence satisfies the statistical criterion that all possible subsequences should 
appear with roughly equal probability, in other words, the quantity of information 
is maximum when the sequence is random. If the probabilities of symbol types are 
not equal at any position in a string then the information conveyed by the string is 
less than a maximum. The difference between the theoretical maximum and the 
information contained in a given string is called redundancy. In other words, if a 
given pattern repeats in the reference string more often than the other possible 
patterns of the same size, then the string contains redundancy. The existence of 
redundancy in a string of symbols means that the string is not random. The ratio 
between the entropy H in such a case and the maximum entropy Hmax is the 
relative entropy. Hence, the redundancy can be defined as R= 1- H / Hmax, showing 
the value with which the sequence is longer than the minimum length necessary to 
transmit the same information. If the redundancy is reduced to zero, the sequence 
becomes random and contains only pure information. 

The previous approaches treated entropy as a probabilistic notion, in particular 
each individual micro state of a system having entropy equal 0. However, it is 
desirable to define a notion of entropy which assigns a non-zero entropy to each 
micro state of the system, as a measure of its individual disorder. 

Firstly, we have to point out the relation between K-C complexity and Shannon's 
entropy. Briefly, classic information theory says a random variable X distributed 
according to P(X=x) has entropy or complexity of a statistical form, where the 
interpretation is that H(X) bits are on the average sufficient to describe an outcome 
x. Computational or algorithmic complexity says that an object x has complexity 
C(x)=the minimum length of a binary program for x. It is very interesting to 



remark that these two notions turn out to be much the same. Thus, the intended 
interpretation of complexity C(x) as a measure of the information content of an 
individual object x is supported by a tight quantitative relationship to Shannon's 
probabilistic notion. In particular, the entropy H=-ΣxP(x)logP(x) of the 
distribution p is asymptotically equal to the expected complexity ΣxP(x)C(x). 

3 An Information Content Approach 
Both the statistical and algorithmic theory of information tries to define 
information in an objective way [2]. The statistical definition assumes that the 
recipient of information is able to extract the entire quantity of information 
transmitted from the source via a communication channel. The problem is to 
evaluate the capability of the receiver to extract a certain quantity of information 
from a given message mixed with random noise, being irrelevant the content of 
that information.  

In this regard, Adami and Cerf claim that our intuition demands that the 
complexity of a random string ought to be zero, as it is not information [3]. 
According to this view, information is not a list of symbols or a description, yet it 
is given by the mutual entropy between two systems. Only that part of the 
description of an object X is information which is correlated or has a meaning in a 
given “universe” U that X is in contact with. That part of the entropy of X which is 
not shared by U (H(X/U)), does not convey any information about U, and is 
considered random. Consequently, a random string can be defined as the one that 
cannot be used to reduce the entropy of a closed system U under consideration, i.e. 
one that shares no entropy with U. One interesting consequence of this definition 
is that a string may be random in one system while extremely “meaningful” in 
another or, in other words, randomness is relative to the capacity of the observer to 
find a “meaning” in the series of events. However, this definition is not without its 
problems. The concept of ‘meaning’ has in turn to be precisely and unequivocally 
defined. If X can share only a part with U, that part being considered meaningful, 
and the rest valueless or random, then information will have only a relative and 
subjective relevance. If a string may be random in one system while meaningful in 
another, this implies that information is devoid of absolute value. If a subject has a 
lack of ability of recognizing the meaning of a certain piece of information, this 
doesn’t mean that information is valueless. This definition applies to closed 
systems of physics and it proves to be inadequate for cognitive systems. Cognitive 
systems are not closed physical systems. 

A closed system or even an open system connected only with a physical 
environment having an upper bound complexity cannot account for self-
intelligence. Such a system would fail in front of challenging environments that 
are inaccessible, nondeterministic, nonepisodic, dynamic and continuous. If we 
are interested in an evolutionary model, we have to postulate the necessity for an 
open system of higher order, which allows for increasing information. In the rest 
of the paper this necessity will be demonstrated. 



Crutchfield showed that due to measurement distortion the complexity of 
recognizing a pattern can be substantially higher than the complexity of generating 
that pattern, [4]. The indeterminacy caused by measurement distortion leads either 
to the appearance of effective randomness (and therefore, meaningless for the 
observer) or to the necessity to change the observer’s model class. Thus, it results 
that the definition of randomness conditionally related with a closed system 
should be carefully reconsidered. Not always a random pattern of a measurement 
should be considered meaningless or valueless.  

The capacity to extract information from a message X or perform an observation 
act depends on the recipient knowledge-base (KB). It may be useful de define the 
information state of a system as: 

∆I = R + I(KB:X),                                                (1) 

where ∆I accounts for the change of internal knowledge base, R is the randomness 
transferred to the system and I(KB:X) is the useful or meaningful information. 
This equation is proposed based on the observation that randomness and 
meaningful information are two different forms of information. 

Now, considering a closed informational system of n-bits of axioms, it is not 
possible to prove that a particular string has an algorithmic randomness greater 
than n [5]. In other words, we can only get out as much as we put in. The 
information is in the best situation conserved. This is the equivalent of the law of 
conservation of energy. Besides conservation of energy (mass, linear and angular 
momentum, electric charge), there must be a law governing conservation of 
information.  

The efficiency of a cognitive system can be defined to be the net meaningful 
information or mutual entropy it can produce per unit of randomness taken in: 

E = - I(KB:X)/Ri                                                                               (2) 

The meaningful information is the difference between the input randomness Ri and 
the rejected randomness or noise, Ro. So, 

E = (Ri – Ro)/Ri = 1 – Ro/Ri                                                                (3) 

This is the maximum possible efficiency for a cognitive system. Thus if all the 
randomness taken in is converted to meaningful information with no discharge of 
waste noise, then the cognitive system is 100% efficient. In other words, this is 
accomplished if Ro = 0 or Ri is infinite, neither of which is possible. However, the 
larger the randomness difference, the greater will be the efficiency of the system. 
In reality, the efficiency will always be less than 1. 

The interaction between the observer and the observed system leads inherently to 
limitations on what the observer can infer from measurements. Similar to Gödel’s 
incompleteness of formal systems, there is incompleteness in the observer’s 
capacity to determine the states of the observed system, limiting the observer’s 
ability to extract abstractions from the environment. Similar conclusions will be 
drawn further using Fisher information 

Fisher information I has also the property to be a measure of the degree of 
disorder of a system. If a curve depicting the probability law p(x) is broad and 



smooth (unbiased probability density function) then I is small. This means high 
disorder or a lack of predictability of values x over its range. If p(x) shows bias to 
particular x values then I becomes large, meaning also low disorder. This result is 
consistent with the values showed by the algorithmic information content applied 
on random and regular series. I acts also as entropy. Shannon entropy H is known 
to have the property of increasing monotonically with time, dH(t)/dt ≥ 0. To that 
theorem (Boltzman H-theorem) there is a corresponding ‘I-theorem’: 

                             dI(t)/dt ≤ 0                                                        (4) 

The ‘I-theorem’ can be seen as an equivalent of ‘Boltzmann H-theorem,’ which 
states that the level of disorder, the entropy H must increase with time. In other 
words, Fisher information of a physical system can only decrease (or remain 
constant) in time. Therefore, Fisher information can be also a measure of disorder. 

According to Frieden, a similar result can be obtained starting from two premises 
of statistical mechanics: (i) the basic premise of statistical mechanics states that 
the probability density function (PDF) for a system that will occur is that one with 
the maximum probability; (ii) there is an ultimate uncertainty or resolution 
‘length’ Δx in the actual value of the origin of a PDF p(x) [6]. 

Thus, I is proportional to the cross-entropy between the PDF p(x) and its displaced 
version p(x + Δx). 

I = - (2/ Δx2) ∫dxp(x)ln[ p(x + Δx)/p(x)],                                (5) 

So, I appears as an approximation on the scale of Δx of the empirical PDF p(x), 
that is different from  the ideal PDF p(x + Δx). Now, by maximizing the logarithm 
of the probability of PDF p(x) we obtain a condition of minimum Fisher 
information, 

I[p(x)] ≡ I = Min.                                                    (6) 

Now, if I is only an approximation on the scale of Δx, then the derived equations 
will loose their validity at scales finer than Δx. It appears an endless subdivision 
process of Δx to which a corresponding finer theory has to be found. At present, 
this issue is controversial between two alternatives: (i) we have to determine an 
ultimate finest resolution length, or (ii) the physics equation are valid down to all 
scales.  

We’ll show further using a version of Richard’s paradox that the first alternative is 
true. First, we have to make a distinction between what is observed and the 
intrinsic information of the observed phenomenon. According to the efficiency of 
the cognitive system defined above, this implies the distinction between how 
much one knows about a phenomenon by observation, i.e. the mutual entropy, and 
how much it is possible to know about it, i.e. the input randomness. The source of 
information is the phenomenon itself. At this level it has the value Ri, which is the 
information carrying the phenomenon. The observed information is I(KB:X). By 
observation a cognitive system (CS) makes a transformation of data into 
parameter estimation. In general, for a given CS and a finite value of I(KB:X), we 
can define OBS(I) to be the estimation of Ri given by the following definition: 

 



OBS(I) = The real information Ri, if any, whose I-name is coded up by I(KB:X), 

OBS(I) = 0, otherwise. 

 

We say that the finite data I(KB:X) is an ‘I-name’ for the real phenomenon Ri 
exactly when CS is able to give Ri on the basis of the observed data I(KB:X). For a 
natural number n, we may have a sequence of estimations OBS(I1) = k Ri,1, 
OBS(I2) = k Ri,2, … OBS(In) = k Ri,n, where 0≤ k≤1. Only under ideal conditions of 
knowledge acquisition, I(KB:X)= Ri. The field of Ri values of intrinsic information 
is composed by a square array of real numbers of the form rij, which comprises the 
whole intrinsic information of the universe. Now, consider a closed CS.  This one 
cannot estimate the diagonal number composed by the values rkk, since this 
number was artificially constructed to differ from every real number with an I-
name. Therefore, CS does not have an I-name for the whole Ri. If CS would have 
a name for the whole Ri then since CS is closed, it will have an I-name for the 
diagonal number, but this is impossible. So, the conclusion is that any closed CS 
cannot have an I-name for the whole intrinsic Ri. No CS can give a finite 
description of how it connects the real and the ideal, the physical and the mental, 
or the language and thought. Consequently, in order to be self-intelligent, the 
system must be connected to an external source of information. 

Finally, based on observations upon informational systems, we may suggest two 
formulations of the corresponding version of the second law applied to 
information: (i) no process is possible whose sole result is the producing of 
information equivalent to the amount of algorithmic randomness received from a 
generator of random events; (ii) no process is possible whose sole result is the 
transfer of random (or compressed) information from a less complex system to a 
more complex one. The entropy is not conserved, but is increasing in time. A 
cognitive system must keep lowering the entropy that is within itself, in order to 
be autonomous cognitive. This implies to be connected to a source of low entropy. 
The form of algorithmic entropy would suggest that the system must be supplied 
with low-entropy energetic combination, according to Boltzman component, and 
with low-entropy complexity forms, for satisfying the complexity component. 
This means a connection with the external world both physical and informational. 
Any other combination, would fail to keep the entropy of the system low, because 
of the entropy balance. 

Conclusions 

The capacity of cognitive system to extract new information from environment 
has been  discussed. A learning machine would manifest intelligence in the proper 
sense of term when it will be capable of finding new solutions and rules of higher 
complexity. Therefore, it was drawn, from different entropic viewpoints, the 
conclusion that the interaction between the observer and the observed system 
leads inherently to limitations on what the observer can infer from measurements. 
Information is in the best situation conserved, and it seems to follow a similar 
principle as energy conservation, but at a higher level. Also, based on observations 
upon informational systems, we suggested a corresponding version of the second 
law. 
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