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1 Introduction 

The encryption method described in [1] is based on the use of dynamical systems. 
The main feature of these systems, relevant in H. Gutowitz approach is that they 
may be iterated both forward and backward in time. Iterating the logistic map 
forward in time needs only an initial state x0 and a value λ to be chosen. Applying 
the equation defining the logistic map produces the state x1. Continuing 
indefinitely, this process leads to obtaining the states x2, x3…. Like many 
dynamical systems, the logistic map is irreversible, to some states corresponding 
more than one antecedent state. The antecedent state xt-1 for a state xt of the 
logistic map is given by 2//11 ⎟

⎠
⎞⎜

⎝
⎛ −± λtx . To iterate the state xt backward in time 

under the logistic map, one of these two states must be chosen. The Gutowitz 
method uses either or both of backward or forward iteration for encryption and 
decryption. Backward iteration of an irreversible dynamical system creates a 
dynamical I/O sequence for the system, which can be used for information 
encryption. The question is which one of the antecedent states for a state to be 
used. This choice can be made either arbitrarily or according to information in an 
input information stream. If some of the choices are arbitrary, this leads to 
arbitrary details in the encoding of the message. The work of a code-breaker not in 
the possession of the key will be very difficult. One who does possess the key, 
therefore knowing the dynamical systems used to encrypt, needs only to apply the 
known dynamical system to the cipher text, operating each dynamical system 
forward in time wherever the dynamical system was operated backward in time 



during encryption. In this manner, all of the information inserted in the cipher text 
during the encryption phase is removed, thus obtaining the original plaintext. 

2 Basic Methodology 

The first alternate embodiment [2] uses the logistic map as the underlying 
dynamical system. The cryptographic key in this embodiment comprises the 
parameter value λ of the logistic map, and the number of times n the map is 
applied during encryption and decryption. Encryption involves only inverse 
iteration, and decryption involves both forward and inverse iteration of the 
dynamical system. 

A standard form for the logistic map defines the next state of the system in terms 
of its previous state by xt by ( )ttt xxx −=+ 141 λ   (1). Here x and λ are real 
numbers between 0 and 1. The two possible antecedent states xt-1 for each state xt 
are given by 2/111 ⎟

⎠
⎞⎜

⎝
⎛ −±=− λtt xx  (2).  

Encrypting any information requires defining the first state of the system x0. The 
value for this first state is obtained by placing the plain information on the first 
position after the decimal point. The next steps consist of calculating the 
antecedent states according to the equation (2). At each step, the choice between 
the two antecedent states is made arbitrary and is recorded in the dynamical I/O by 
placing a 1 bit for the choice of  and a 0 bit for . The encryption phase 
stops at completing the entire n steps of the process.  
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−
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+
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The antecedent state obtained in the last step of the encryption process is 
submitted to the receiver. The receiver of the cipher text can decrypt it by 
applying the logistic map forward in time for n steps. The actual information sent 
is recovered from the first digit after the decimal point from the information 
obtained in the last step of the decryption phase. To rebuild the information placed 
in the dynamical I/O by the sender during the encryption phase, is used the inverse 
iteration. At each forward iteration, the state xt+1 is computed from the state xt. By 
inverse iteration, the antecedent states of the xt+1 are computed and compared each 
with xt. If the  antecedent state equals x1−

−
tx t, then the receiver knows that a 1 bit 

was placed in the dynamical I/O. If the  antecedent state equals x1−
+
tx t, than a 0 

bit was placed in the dynamical I/O. By forcing certain choices for the antecedent 
states for some steps – known by both parties – in the encryption phase is obtained 
the identification information which can – for instance – give the number of the 
block being encrypted, to be used during checks for transmission errors.  



In table 1 there is an example of the encryption/decryption process carried out for 
the digit 8. The first state is encoded as “0.8”. The number of steps the process is 
performed is 8 and the second element of the key is the value of λ=1. The 
identification information is placed at steps 6 – 8 in the encryption phase and 
recovered at steps 7 – 5 in the decryption phase. 

 
Encryption Decryption 

Step Dynamical I/O State Step Dynamical I/O State 
0  0.8000000000 0  0.1166039924 
1 1 0.2763932023 1 1 0.4120300054 
2 0 0.9253254042 2 1 0.9690451202 
3 1 0.3633667355 3 0 0.1199867010 
4 0 0.8989465078 4 1 0.4223595703 
5 1 0.3410554404 5 1 0.9758878547 
6 1 0.0941229990 6 0 0.0941229990 
7 0 0.9758878547 7 1 0.3410554404 
8 1 0.4223595703 8 1 0.8989465078 
9 1 0.1199867010 9 0 0.3633667355 
10 0 0.9690451202 10 1 0.9253254042 
11 1 0.4120300054 11 0 0.2763932023 
12 1 0.1166039924 12 1 0.8000000000 

Table 1. One run of the process for the alternate embodiment 1. 

3 Aspects of the Error Propagation in Encryption 
and Decryption 

The original specifications do not state whether or not the calculations imply a 
certain number of decimals to be used. Due to the floating point operations used 
during the process, when it is tried to impose a certain number of decimals to the 
calculation there will always be certain differences between the value that was the 
actual result of the operation and the value that will be used in the next step of the 
process. When the capacity of the programming language is used at its full 
potential, usually one can not go beyond the number of 15 decimals, operating 
with the double data type. The process with 15 decimals can not be studied nor 
can it not be compensated by any more operations. It can only be corrected at the 
end of the decryption phase. The processes that involve less than 15 decimals can 
be compensated by evaluating the errors involved by such a limitation. 

The rounding to a number of decimal places can not be separated from the errors 
of rounding. These errors have a value equal to the difference between the value 
gained from calculations and the value passed on to the next step of the process. 



This error has a known value and its sign is well determined. The question is in 
what way it influences the result of the next step (value and sign).  

Given a formula ( )nlllfx K,, 21=  (3) where li are determined values with 
medium errors ±mi then mx is given by [3]: 
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the partial derivatives of the function f, whose numerical values are evaluated by 
using the average values of mi.  

This rule can be applied to the calculations implementing the first alternate 
embodiment, but only half of the problem is solved by this. The value of the error 
transmitted into the next step is known now, but its sign is yet to be discovered. 

The equation used in the decryption phase is the equation (1) . 
For easier understanding of the calculation, there must be made a replacement in 
the notations , which leads  to the next equation 

( )ttt xxx −=+ 141 λ

xxandyx tt ⇔⇔+1

( xxy −= 14 )λ  (5). The effect of rounding the values is expressed in the following 

manner: xxx fc Δ+= (6), where xc is the value obtained from calculations for x, 

xf is the rounded value and xΔ  is the difference between the two. It can be 
positive as well as negative. 

The error involved in the evaluation of y is given by the next formula [3]: 
xxy 214 −Δ=Δ λ  (7).  

Using the equation (5), the formulas for yc and yf can be obtained. ∆y is obtained 
similar to ∆x, by  the difference between yc and yf  like in (8). 

( ) ( );14;14 fffccc xxyxxy −=−= λλ ( )[ ]cffc xxxyy +−Δ=− 14λ (8) 

The sign of ∆y=yc-yf can be obtained by analyzing the terms in the equation (8): 

 
cf xx +  txx Δ⇔Δ  1+Δ⇔Δ txy  

≥0 ≥0 ≤1 
<0 <0 
≥0 ≤0 >1 
<0 >0 

Table 2. The sign of the error for equation (1) 

For the encryption process, the inverse iteration is used. The equation (2), after 
making the necessary simplifying notations , can be yxandxx tt ⇔⇔−1



transcribed into 211 ⎟
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(11), with similar meanings as the equation (6) above. The difference between x
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and xf is given by the next equation:  
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Two situations are evident: 
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The sign of ∆x is determined similar as for the equation (1): 
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Table 3. The sign of the error for the equation (2). 



3 Methods of Avoiding Error Propagation 

Though applying the method described above resolves some of the problems 
caused by rounding to a certain number of decimal places, it is not perfect. The 
calculation is still affected by the rounding errors due to the limitation of the 
programming language used to implement the method (usually one can use a 
maximum number of 15 decimal places when using the double data type). 
Therefore, it is necessary to apply a certain correction for an useful result. Further 
more, even when there is no limit regarding the number of decimal places, the 
correction must take place at the end of the decryption process, due to the same 
reason mentioned above. 

The following table presents the values of these corrections and the possible 
parameters given to the system in order to provide a secure encryption of the 
information. The method described by Gutowitz states that the plain text is 
recovered from the first position after the decimal point. This is equivalent to 
getting the integer portion of the number obtained by multiplying by 10 the result 
of the decryption process. 

 
No. of 
Steps  

Correction for standard 
process 

Correction for the rounding 
process 

Number of decimals 
for rounding  

1 3.99680288865056E-15 2.99299474093573E-12 12 
2 1.69864122767649E-14 2.36530239838828E-11 12 
3 1.74027459109993E-13 1.71925973457832E-10 12 
4 1.02101660459653E-12 1.04501296505077E-09 12 
5 7.50070838773098E-12 8.36303704065956E-09 12 
6 5.67530467066035E-11 6.94935329836888E-08 12 
7 4.69110611467372E-10 6.10516498023017E-07 12 
8 4.03960298545059E-09 4.26269194503393E-06 12 
9 2.8577477051428E-08 2.48605161110027E-05 12 

10 2.49921816020127E-07 1.88613482842701E-04 12 

Table 4. The values of the corrections 

Each value of the corrections presented for the rounding process works only for a 
number of decimals of 12 and above. If the process is implemented in Visual 
Basic, this means that the domain for the number of decimals this process works is 
between 12 and 14 decimals. The case with 15 decimals will not be considered 
because 15 is the maximum number of decimals possible for the operations in 
Visual Basic using the double data type and rounding to 15 decimals is identical to 
using the standard process. 

A more specific values for the corrections can be determined for the processes 
classified by the number of steps they consist of. In every category of processes, 
according to the number of decimals used, there can be defined a value for the 



correction. As seen in table 5, this leads to a larger domain of number of decimals 
for which the process works. The difference mentioned in the table is the result of 
a substract operation between the encoded form of the number encrypted and the 
result of the decryption process. The value for the correction is the value of the 
maximum difference for the number of steps and decimals used in the process. 
The value must be chosen so that, when applied, it gives a good result even for the 
cases when the difference is the minimum difference. This means that, for the 
process in 3 steps and 3 decimals, the correction can not be used, but is can be 
used for a process in 3 steps and 4 decimals.  

 
 Encryption in 3 steps Encryption in 9 steps 

Decimal
s 

Tota
l 

Succee
d 

Minimu
m 

difference 

Maximu
m 

differenc
e Total 

Succee
d 

Minimum 
difference 

Maximu
m 

differenc
e 

1 800 46 -45.3811 0.9 
5120

0 2414 -6.8E+161 0.9 

2 800 162 -1.4752 0.9 
5120

0 1406 -5.45E+73 0.9 

3 800 414 -0.16493 0.2 
5120

0 1692 -3.69E+27 0.9 

4 800 414 1.22E-05 0.01611 
5120

0 3550 -4.48E+13 0.9 

5 800 440 3.58E-07 0.00167 
5120

0 7218 -7.27E+5 0.9 

6 800 426 4.60E-08 1.46E-04 
5120

0 13236 -97.2337 0.9 

7 800 454 7.26E-09 1.78E-05 
5120

0 20780 -2.49351 0.9 

8 800 432 3.72E-10 1.64E-06 
5120

0 27172 -0.340681 0.3 

9 800 424 6.58E-11 1.51E-07 
5120

0 27662 1.09E-10 0.03513 

10 800 396 8.67E-12 1.81E-08 
5120

0 27556 7.14E-11 3.18E-03 

11 800 436 1.13E-13 1.68E-09 
5120

0 27706 3.84E-12 2.24E-04 

12 800 434 3.41E-14 1.72E-10 
5120

0 27961 2.40E-14 2.49E-05 

13 800 437 2.00E-15 1.13E-11 
5120

0 27570 4.00E-15 2.49E-06 

14 800 425 9.99E-16 1.71E-12 
5120

0 27516 9.99E-16 2.97E-07 



15 800 440 4.02E-16 1.77E-13 
5120

0 27809 9.99E-16 2.94E-08 
Table 5. The maximum difference for processes of 3 and 9 steps 

The 3 steps process has a correction of 1.51E-7 for 9 decimals and the 9 steps 
process has a correction of 0.03513 for the same number of decimals. This means 
that, as the number of steps increases, it is more difficult to correct the process for 
lower number of decimals, so, it is best to chose a higher number of decimals 
when running a process with higher number of steps. Beside these, the process 
does not work in all the situations when λ equals to 1 and the number encrypted is 
0. These situations lead to overflow errors which cancel the execution of the 
encryption/ decryption process process. 

Determining the values for the corrections can be very difficult. The values 
presented above were determined by running the system for every possible 
combination of the dynamical I/O. 

A way of avoiding the evaluation of the corrections is to perform a process of 
rounding to 0 decimal places on the number obtained after multiplying the result 
of the decryption phase by 10. The corrections are no longer needed when the 
plain text is recovered by a round operation. This improves greatly the efficiency 
of the process, avoiding the entire process of evaluating the corrections needed for 
the encryption/ decryption process. For the standard process – that does not 
involve any limitation of the number of decimals used – the only errors that appear 
are in some of the situations described above, when the number encrypted is 0 and 
λ equals 1.  

The process that forces the calculation to use rounding to a number of decimal 
places is significantly improved compared to the previous method of obtaining the 
plain text. 

When the process consists of one step only and one decimal place, the calculations 
performed are generally wrong. All the other cases, implying a greater number of 
decimals, work. Along with the increase in the steps of the process, the lower limit 
of the number decimals at which the limitation is done without causing failure to 
the process increases.  

A drawback of this method is the dramatic increase of the maximum difference 
between the value of first state of the encryption phase and the value of last one of 
the decryption phase – which, at east in theory, should be equal. Its behavior can 
be observed from the tables below. 

Decimals All Succeeded Failed Maximum difference Overflow 
1 200 54 146 0.3 0 

2 200 200 0 Not available 0 

3 200 200 0 Not available 0 

--- --- --- --- --- --- 



15 200 200 0 Not available 0 
Table 6. Values of the maximum difference for the process of 1step 

 

Decimals All Succeeded Failed Maximum difference Overflow 
1 25600 1230 24370 0.9 1892 

2 25600 686 24914 0.9 764 

3 25600 1170 24430 0.9 374 

4 25600 3462 22138 0.9 270 

5 25600 7874 17726 0.9 254 

6 25600 14576 11024 0.9 254 

7 25600 22566 3034 0.5 254 

8 25600 25346 254 Not available 254 

--- --- --- --- --- --- 

15 25600 25346 254 Not available 254 
Table 7. Values of the maximum difference for the process of 8 steps 

It grows from 0.3 in the case of the process in 1 step and calculations with only 
one decimal to 0.9 for the process in 8 steps and number of decimals between 1 
and 6. This means that, with the growth of the number of steps, it is not suitable to 
our purpose to obtain the plain text by a rounding process when a specific number 
of decimals is forced upon the process. This method can be useful only when the 
calculations are free from such a requirement. Using the first method – that does 
not imply the use of rounding in obtaining the original information – then the 
domain of the number of decimals is determined by the corrections chosen. 

The conclusion that can be drawn from these is that the solution for this problem 
is a mixed method. When it is needed to perform the process with a number of 
decimals, the plaintext will be obtained from the integer portion of the product 
between the result of the decryption phase and 10, which implies obtaining the 
suitable corrections, and, when such a need is not desired, the plaintext is the 
integer portion of the rounded to 0 decimals product mentioned above. 

4 The Encryption/Decryption Improved Methodology 

The cryptographic key of the modified method includes the parameter λ, the 
number of steps of the process and the values of the corrections that might be 
applied after the decryption phase. Both parties of the encrypted communication 
share this information. They also have to agree upon the number of decimals used 
during the encryption. Each step of the encryption phase consists of several 
operations and is applied upon the number gained from the previous step, except 
the first one, who is applied directly upon the plaintext, after it has been encoded 



as necessary (the number encrypted is placed in the first position after the decimal 
point, the integer portion is equal to 0 and all other decimals are 0 as well). 

First, the number from the previous step is rounded, if needed, to the specified 
number of decimals. The error caused by this rounding is evaluated, then it is 
evaluated the error of the calculation, according to the error propagation rule, 
described in the equation (7). The number to be sent to the next step is then 
obtained, as it is presented in the equation (2), and modified accordingly, with the 
error evaluated previously. After all the steps of the encryption phase are passed 
through, a last rounding is performed, if it was agreed upon between the two 
parties to perform the calculations to a specific number of decimals, then the 
information is passed to the receiver. The receiver performs the decryption 
process, which is the inverse of the process of the encryption phase. 

Every step in the decryption phase performs at the beginning a rounding operation 
upon the number received from the previous step, respectively the encryption 
phase, for the first step. The next operation is to evaluate the rounding error that 
occurred, useful in obtaining the overall error of the operations in the step, as 
presented in the equation (10). The number that will be supplied to the next step 
(or the result of the decryption phase) is obtained according to the equation (2) and 
updated with the overall error. When the number of steps has been reached, the 
process stops, the last number evaluated being the result of the decryption process. 
The plain text will be recovered from this result according to the way all the 
calculations were performed.  

If rounding was used, then the correction has to be added to the result, for a 
correct answer, but the result of the decryption process is no longer rounded. The 
original information is then recovered from the first decimal position after the 
decimal point. If there were no such limitation, as it regards the number of 
decimals used, no correction is applied and the plain text is obtained the same as 
the previous way. 

Conclusions  

The solutions presented in this paper improve the algorithm proposed by H. 
Gutowitz (alternate first embodiement), solving the problems created by the 
limitations of the computers in the case of a software implementation, leading 
towards an encryption method with obvious practical use. Implementing this 
method with specialized hardware equipment would greatly improve the 
performance of this method, as well as making it more resistant to code-breakers 
and tampers.  
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