

Error Propagation Study for Gutowitz
Encryption Algorithm

Daniel-Ioan Curiac, George Serban Vremescu
Department of Control Systems Engineering, “Politehnica” University of
Timisoara, Romania, curiac@aut.utt.ro

Abstract: This paper presents some aspects regarding error propagation in
encryption/decryption process based on H.Gutowitz algorithm,alternate first
embodiement. Solutions for avoiding these problems are also presented.

Keywords: encryption/decryption algorithm, error propagation, dynamical system

1 Introduction

The encryption method described in [1] is based on the use of dynamical systems.
The main feature of these systems, relevant in H. Gutowitz approach is that they
may be iterated both forward and backward in time. Iterating the logistic map
forward in time needs only an initial state x0 and a value λ to be chosen. Applying
the equation defining the logistic map produces the state x1. Continuing
indefinitely, this process leads to obtaining the states x2, x3…. Like many
dynamical systems, the logistic map is irreversible, to some states corresponding
more than one antecedent state. The antecedent state xt-1 for a state xt of the
logistic map is given by 2//11 ⎟

⎠
⎞⎜

⎝
⎛ −± λtx . To iterate the state xt backward in time

under the logistic map, one of these two states must be chosen. The Gutowitz
method uses either or both of backward or forward iteration for encryption and
decryption. Backward iteration of an irreversible dynamical system creates a
dynamical I/O sequence for the system, which can be used for information
encryption. The question is which one of the antecedent states for a state to be
used. This choice can be made either arbitrarily or according to information in an
input information stream. If some of the choices are arbitrary, this leads to
arbitrary details in the encoding of the message. The work of a code-breaker not in
the possession of the key will be very difficult. One who does possess the key,
therefore knowing the dynamical systems used to encrypt, needs only to apply the
known dynamical system to the cipher text, operating each dynamical system
forward in time wherever the dynamical system was operated backward in time

during encryption. In this manner, all of the information inserted in the cipher text
during the encryption phase is removed, thus obtaining the original plaintext.

2 Basic Methodology

The first alternate embodiment [2] uses the logistic map as the underlying
dynamical system. The cryptographic key in this embodiment comprises the
parameter value λ of the logistic map, and the number of times n the map is
applied during encryption and decryption. Encryption involves only inverse
iteration, and decryption involves both forward and inverse iteration of the
dynamical system.

A standard form for the logistic map defines the next state of the system in terms
of its previous state by xt by ()ttt xxx −=+ 141 λ (1). Here x and λ are real
numbers between 0 and 1. The two possible antecedent states xt-1 for each state xt
are given by 2/111 ⎟

⎠
⎞⎜

⎝
⎛ −±=− λtt xx (2).

Encrypting any information requires defining the first state of the system x0. The
value for this first state is obtained by placing the plain information on the first
position after the decimal point. The next steps consist of calculating the
antecedent states according to the equation (2). At each step, the choice between
the two antecedent states is made arbitrary and is recorded in the dynamical I/O by
placing a 1 bit for the choice of and a 0 bit for . The encryption phase
stops at completing the entire n steps of the process.

1−
−
tx 1−

+
tx

The antecedent state obtained in the last step of the encryption process is
submitted to the receiver. The receiver of the cipher text can decrypt it by
applying the logistic map forward in time for n steps. The actual information sent
is recovered from the first digit after the decimal point from the information
obtained in the last step of the decryption phase. To rebuild the information placed
in the dynamical I/O by the sender during the encryption phase, is used the inverse
iteration. At each forward iteration, the state xt+1 is computed from the state xt. By
inverse iteration, the antecedent states of the xt+1 are computed and compared each
with xt. If the antecedent state equals x1−

−
tx t, then the receiver knows that a 1 bit

was placed in the dynamical I/O. If the antecedent state equals x1−
+
tx t, than a 0

bit was placed in the dynamical I/O. By forcing certain choices for the antecedent
states for some steps – known by both parties – in the encryption phase is obtained
the identification information which can – for instance – give the number of the
block being encrypted, to be used during checks for transmission errors.

In table 1 there is an example of the encryption/decryption process carried out for
the digit 8. The first state is encoded as “0.8”. The number of steps the process is
performed is 8 and the second element of the key is the value of λ=1. The
identification information is placed at steps 6 – 8 in the encryption phase and
recovered at steps 7 – 5 in the decryption phase.

Encryption Decryption

Step Dynamical I/O State Step Dynamical I/O State
0 0.8000000000 0 0.1166039924
1 1 0.2763932023 1 1 0.4120300054
2 0 0.9253254042 2 1 0.9690451202
3 1 0.3633667355 3 0 0.1199867010
4 0 0.8989465078 4 1 0.4223595703
5 1 0.3410554404 5 1 0.9758878547
6 1 0.0941229990 6 0 0.0941229990
7 0 0.9758878547 7 1 0.3410554404
8 1 0.4223595703 8 1 0.8989465078
9 1 0.1199867010 9 0 0.3633667355
10 0 0.9690451202 10 1 0.9253254042
11 1 0.4120300054 11 0 0.2763932023
12 1 0.1166039924 12 1 0.8000000000

Table 1. One run of the process for the alternate embodiment 1.

3 Aspects of the Error Propagation in Encryption
and Decryption

The original specifications do not state whether or not the calculations imply a
certain number of decimals to be used. Due to the floating point operations used
during the process, when it is tried to impose a certain number of decimals to the
calculation there will always be certain differences between the value that was the
actual result of the operation and the value that will be used in the next step of the
process. When the capacity of the programming language is used at its full
potential, usually one can not go beyond the number of 15 decimals, operating
with the double data type. The process with 15 decimals can not be studied nor
can it not be compensated by any more operations. It can only be corrected at the
end of the decryption phase. The processes that involve less than 15 decimals can
be compensated by evaluating the errors involved by such a limitation.

The rounding to a number of decimal places can not be separated from the errors
of rounding. These errors have a value equal to the difference between the value
gained from calculations and the value passed on to the next step of the process.

This error has a known value and its sign is well determined. The question is in
what way it influences the result of the next step (value and sign).

Given a formula ()nlllfx K,, 21= (3) where li are determined values with
medium errors ±mi then mx is given by [3]:

22

2
2

2

1
1

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

++⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

±= n
n

x m
l
fm

l
fm

l
fm K (4) where

il
f
∂
∂

 are

the partial derivatives of the function f, whose numerical values are evaluated by
using the average values of mi.

This rule can be applied to the calculations implementing the first alternate
embodiment, but only half of the problem is solved by this. The value of the error
transmitted into the next step is known now, but its sign is yet to be discovered.

The equation used in the decryption phase is the equation (1) .
For easier understanding of the calculation, there must be made a replacement in
the notations , which leads to the next equation

()ttt xxx −=+ 141 λ

xxandyx tt ⇔⇔+1

(xxy −= 14)λ (5). The effect of rounding the values is expressed in the following

manner: xxx fc Δ+= (6), where xc is the value obtained from calculations for x,

xf is the rounded value and xΔ is the difference between the two. It can be
positive as well as negative.

The error involved in the evaluation of y is given by the next formula [3]:
xxy 214 −Δ=Δ λ (7).

Using the equation (5), the formulas for yc and yf can be obtained. ∆y is obtained
similar to ∆x, by the difference between yc and yf like in (8).

() ();14;14 fffccc xxyxxy −=−= λλ ()[]cffc xxxyy +−Δ=− 14λ (8)

The sign of ∆y=yc-yf can be obtained by analyzing the terms in the equation (8):

cf xx + txx Δ⇔Δ 1+Δ⇔Δ txy

≥0 ≥0 ≤1
<0 <0
≥0 ≤0 >1
<0 >0

Table 2. The sign of the error for equation (1)

For the encryption process, the inverse iteration is used. The equation (2), after
making the necessary simplifying notations , can be yxandxx tt ⇔⇔−1

transcribed into 211 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−±=
λ
yx (9). The error for calculating [3] x is given by

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−Δ=Δ
λ

λ yyx 14 (10). The rounding errors are expressed by

(11), with similar meanings as the equation (6) above. The difference between x

yyy fc Δ+=

c
and xf is given by the next equation:

211211211 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−±=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−±−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−±=−

λλλλ
fcfc

fc

yyyy
xx m (12)

Two situations are evident:

I. 211 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−−=−

λλ
fc

fc

yy
xx with the two alternatives:

a) 0011 ≤−⇒≤−−−⇒≥⇒≥ fc
fcfc

fc xx
yyyyyy
λλλλ

b) 0011 >−⇒>−−−⇒<⇒< fc
fcfc

fc xx
yyyyyy
λλλλ

II. 211 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+−−=−

λλ
fc

fc

yy
xx with the two alternatives:

a) 0011 ≥−⇒≥−+−−⇒≥⇒≥ fc
fcfc

fc xx
yyyyyy
λλλλ

b) 0011 <−⇒<−+−−⇒<⇒< fc
fcfc

fc xx
yyyyyy
λλλλ

The sign of ∆x is determined similar as for the equation (1):

x or xt-1 txy Δ⇔Δ 1−Δ⇔Δ txx

≥0 ≤0
211211 1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= −

λλ

t
t xxor

y
x

<0 >0

≥0 ≥0
211211 1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= −

λλ

t
t xxoryx

<0 <0

Table 3. The sign of the error for the equation (2).

3 Methods of Avoiding Error Propagation

Though applying the method described above resolves some of the problems
caused by rounding to a certain number of decimal places, it is not perfect. The
calculation is still affected by the rounding errors due to the limitation of the
programming language used to implement the method (usually one can use a
maximum number of 15 decimal places when using the double data type).
Therefore, it is necessary to apply a certain correction for an useful result. Further
more, even when there is no limit regarding the number of decimal places, the
correction must take place at the end of the decryption process, due to the same
reason mentioned above.

The following table presents the values of these corrections and the possible
parameters given to the system in order to provide a secure encryption of the
information. The method described by Gutowitz states that the plain text is
recovered from the first position after the decimal point. This is equivalent to
getting the integer portion of the number obtained by multiplying by 10 the result
of the decryption process.

No. of
Steps

Correction for standard
process

Correction for the rounding
process

Number of decimals
for rounding

1 3.99680288865056E-15 2.99299474093573E-12 12
2 1.69864122767649E-14 2.36530239838828E-11 12
3 1.74027459109993E-13 1.71925973457832E-10 12
4 1.02101660459653E-12 1.04501296505077E-09 12
5 7.50070838773098E-12 8.36303704065956E-09 12
6 5.67530467066035E-11 6.94935329836888E-08 12
7 4.69110611467372E-10 6.10516498023017E-07 12
8 4.03960298545059E-09 4.26269194503393E-06 12
9 2.8577477051428E-08 2.48605161110027E-05 12

10 2.49921816020127E-07 1.88613482842701E-04 12

Table 4. The values of the corrections

Each value of the corrections presented for the rounding process works only for a
number of decimals of 12 and above. If the process is implemented in Visual
Basic, this means that the domain for the number of decimals this process works is
between 12 and 14 decimals. The case with 15 decimals will not be considered
because 15 is the maximum number of decimals possible for the operations in
Visual Basic using the double data type and rounding to 15 decimals is identical to
using the standard process.

A more specific values for the corrections can be determined for the processes
classified by the number of steps they consist of. In every category of processes,
according to the number of decimals used, there can be defined a value for the

correction. As seen in table 5, this leads to a larger domain of number of decimals
for which the process works. The difference mentioned in the table is the result of
a substract operation between the encoded form of the number encrypted and the
result of the decryption process. The value for the correction is the value of the
maximum difference for the number of steps and decimals used in the process.
The value must be chosen so that, when applied, it gives a good result even for the
cases when the difference is the minimum difference. This means that, for the
process in 3 steps and 3 decimals, the correction can not be used, but is can be
used for a process in 3 steps and 4 decimals.

 Encryption in 3 steps Encryption in 9 steps

Decimal
s

Tota
l

Succee
d

Minimu
m

difference

Maximu
m

differenc
e Total

Succee
d

Minimum
difference

Maximu
m

differenc
e

1 800 46 -45.3811 0.9
5120

0 2414 -6.8E+161 0.9

2 800 162 -1.4752 0.9
5120

0 1406 -5.45E+73 0.9

3 800 414 -0.16493 0.2
5120

0 1692 -3.69E+27 0.9

4 800 414 1.22E-05 0.01611
5120

0 3550 -4.48E+13 0.9

5 800 440 3.58E-07 0.00167
5120

0 7218 -7.27E+5 0.9

6 800 426 4.60E-08 1.46E-04
5120

0 13236 -97.2337 0.9

7 800 454 7.26E-09 1.78E-05
5120

0 20780 -2.49351 0.9

8 800 432 3.72E-10 1.64E-06
5120

0 27172 -0.340681 0.3

9 800 424 6.58E-11 1.51E-07
5120

0 27662 1.09E-10 0.03513

10 800 396 8.67E-12 1.81E-08
5120

0 27556 7.14E-11 3.18E-03

11 800 436 1.13E-13 1.68E-09
5120

0 27706 3.84E-12 2.24E-04

12 800 434 3.41E-14 1.72E-10
5120

0 27961 2.40E-14 2.49E-05

13 800 437 2.00E-15 1.13E-11
5120

0 27570 4.00E-15 2.49E-06

14 800 425 9.99E-16 1.71E-12
5120

0 27516 9.99E-16 2.97E-07

15 800 440 4.02E-16 1.77E-13
5120

0 27809 9.99E-16 2.94E-08
Table 5. The maximum difference for processes of 3 and 9 steps

The 3 steps process has a correction of 1.51E-7 for 9 decimals and the 9 steps
process has a correction of 0.03513 for the same number of decimals. This means
that, as the number of steps increases, it is more difficult to correct the process for
lower number of decimals, so, it is best to chose a higher number of decimals
when running a process with higher number of steps. Beside these, the process
does not work in all the situations when λ equals to 1 and the number encrypted is
0. These situations lead to overflow errors which cancel the execution of the
encryption/ decryption process process.

Determining the values for the corrections can be very difficult. The values
presented above were determined by running the system for every possible
combination of the dynamical I/O.

A way of avoiding the evaluation of the corrections is to perform a process of
rounding to 0 decimal places on the number obtained after multiplying the result
of the decryption phase by 10. The corrections are no longer needed when the
plain text is recovered by a round operation. This improves greatly the efficiency
of the process, avoiding the entire process of evaluating the corrections needed for
the encryption/ decryption process. For the standard process – that does not
involve any limitation of the number of decimals used – the only errors that appear
are in some of the situations described above, when the number encrypted is 0 and
λ equals 1.

The process that forces the calculation to use rounding to a number of decimal
places is significantly improved compared to the previous method of obtaining the
plain text.

When the process consists of one step only and one decimal place, the calculations
performed are generally wrong. All the other cases, implying a greater number of
decimals, work. Along with the increase in the steps of the process, the lower limit
of the number decimals at which the limitation is done without causing failure to
the process increases.

A drawback of this method is the dramatic increase of the maximum difference
between the value of first state of the encryption phase and the value of last one of
the decryption phase – which, at east in theory, should be equal. Its behavior can
be observed from the tables below.

Decimals All Succeeded Failed Maximum difference Overflow
1 200 54 146 0.3 0

2 200 200 0 Not available 0

3 200 200 0 Not available 0

--- --- --- --- --- ---

15 200 200 0 Not available 0
Table 6. Values of the maximum difference for the process of 1step

Decimals All Succeeded Failed Maximum difference Overflow
1 25600 1230 24370 0.9 1892

2 25600 686 24914 0.9 764

3 25600 1170 24430 0.9 374

4 25600 3462 22138 0.9 270

5 25600 7874 17726 0.9 254

6 25600 14576 11024 0.9 254

7 25600 22566 3034 0.5 254

8 25600 25346 254 Not available 254

--- --- --- --- --- ---

15 25600 25346 254 Not available 254
Table 7. Values of the maximum difference for the process of 8 steps

It grows from 0.3 in the case of the process in 1 step and calculations with only
one decimal to 0.9 for the process in 8 steps and number of decimals between 1
and 6. This means that, with the growth of the number of steps, it is not suitable to
our purpose to obtain the plain text by a rounding process when a specific number
of decimals is forced upon the process. This method can be useful only when the
calculations are free from such a requirement. Using the first method – that does
not imply the use of rounding in obtaining the original information – then the
domain of the number of decimals is determined by the corrections chosen.

The conclusion that can be drawn from these is that the solution for this problem
is a mixed method. When it is needed to perform the process with a number of
decimals, the plaintext will be obtained from the integer portion of the product
between the result of the decryption phase and 10, which implies obtaining the
suitable corrections, and, when such a need is not desired, the plaintext is the
integer portion of the rounded to 0 decimals product mentioned above.

4 The Encryption/Decryption Improved Methodology

The cryptographic key of the modified method includes the parameter λ, the
number of steps of the process and the values of the corrections that might be
applied after the decryption phase. Both parties of the encrypted communication
share this information. They also have to agree upon the number of decimals used
during the encryption. Each step of the encryption phase consists of several
operations and is applied upon the number gained from the previous step, except
the first one, who is applied directly upon the plaintext, after it has been encoded

as necessary (the number encrypted is placed in the first position after the decimal
point, the integer portion is equal to 0 and all other decimals are 0 as well).

First, the number from the previous step is rounded, if needed, to the specified
number of decimals. The error caused by this rounding is evaluated, then it is
evaluated the error of the calculation, according to the error propagation rule,
described in the equation (7). The number to be sent to the next step is then
obtained, as it is presented in the equation (2), and modified accordingly, with the
error evaluated previously. After all the steps of the encryption phase are passed
through, a last rounding is performed, if it was agreed upon between the two
parties to perform the calculations to a specific number of decimals, then the
information is passed to the receiver. The receiver performs the decryption
process, which is the inverse of the process of the encryption phase.

Every step in the decryption phase performs at the beginning a rounding operation
upon the number received from the previous step, respectively the encryption
phase, for the first step. The next operation is to evaluate the rounding error that
occurred, useful in obtaining the overall error of the operations in the step, as
presented in the equation (10). The number that will be supplied to the next step
(or the result of the decryption phase) is obtained according to the equation (2) and
updated with the overall error. When the number of steps has been reached, the
process stops, the last number evaluated being the result of the decryption process.
The plain text will be recovered from this result according to the way all the
calculations were performed.

If rounding was used, then the correction has to be added to the result, for a
correct answer, but the result of the decryption process is no longer rounded. The
original information is then recovered from the first decimal position after the
decimal point. If there were no such limitation, as it regards the number of
decimals used, no correction is applied and the plain text is obtained the same as
the previous way.

Conclusions

The solutions presented in this paper improve the algorithm proposed by H.
Gutowitz (alternate first embodiement), solving the problems created by the
limitations of the computers in the case of a software implementation, leading
towards an encryption method with obvious practical use. Implementing this
method with specialized hardware equipment would greatly improve the
performance of this method, as well as making it more resistant to code-breakers
and tampers.

References

[1] Gutowitz, H.A. – Method and Apparatus for the Encryption, Decryption
and Authentication of Messages Using Dynamical Systems, U.S. Patent 5,365,589
Issued Nov. 15, 1994.

[2] Gutowitz, H.A. – Cryptography with Dynamical Systems, In: Cellular
Automata and Cooperative Phenomena, Kluwer Academic Press, 1993.

[3] *** - Formular Matematic şi Tehnic pentru elevi, studenţi şi tehnicieni,
pages 815 – 818, Editura Tehnică, 1950.

[4] Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New
York: Dover, p. 14, 1972.

	1 Introduction
	2 Basic Methodology
	3 Aspects of the Error Propagation in Encryption and Decryption
	3 Methods of Avoiding Error Propagation
	4 The Encryption/Decryption Improved Methodology

