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Abstract: In this paper we summarize some results on constructing preference re-
lations from criterion values, in the framework of multiple criteria decision making.
First we recall two types of methods to build a comprehensive preference model.
Then we show how to construct crisp and fuzzy preferences from criterion evalua-
tions.
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1 Introduction

Most of the real-world decision problems take place in a complex environ-
ment where conflicting systems of logic, uncertain and imprecise knowledge
have to be considered. To face such complexity, preference modelling requires
the use of specific tools, techniques and concepts which allow to reflect the
available information with the appropriate granularity.

2 Multiple Criteria Decision Making

In the framework of multiple criteria decision making (MCDM), decision
problems can often be formulated as comparing and/or discriminating be-
tween m potential alternatives (i.e., variants, projects, candidates) of a set
A = {a1, . . . , am}, on the basis of one or several criteria. Usually, the set of
criteria G = {g1, . . . , gn} is considered as a set of real-valued functions de-
fined on A, where aij denotes the score gj(ai) of alternative ai according to
the criterion function gj , for any ai ∈ A. For simplicity, the usual assumption
is the higher the score, the better the alternative.

One can distinguish two main types of methods to build a comprehensive
preference model:
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1. Scoring methods based on the aggregation of fuzzy evaluations: The pref-
erence analysis is conducted on the set A. An overall evaluation is given
to each alternative on the basis of its partial scores on each criterion.
Alternatives are then ordered on the basis of these overall evaluations.
The most typical example of this approach is to found the discrimination
between alternatives on the basis of the weighted average of their scores
(but other aggregative operators may be considered as well). The usual
implicit assumption when using such a model is the complete and tran-
sitive comparability of alternatives. Considering an overall score indeed,
a is preferred to b as soon as the aggregated score of a is strictly greater
than the aggregated score of b.

2. Pairwise comparisons methods based on the aggregation of fuzzy pref-
erence relations: The preference analysis is conducted on the Cartesian
product A×A. This approach is mainly used in social choice theory (Sen,
1986) and outranking methods (e.g. Roy and Bouyssou, 1993). Transitive
preference relations are built on each dimension j from scores of alter-
natives on this dimension. The resulting relations are then aggregated
into a comprehensive model which reflects a kind of majoritarian prefer-
ence among the set of criteria. This approach allows a fine and flexible
description of preferences without forcing arbitrarily alternatives to be
comparable. The main difficulty with this approach is that intransitiv-
ities or cycles can occur in the overall preference model resulting from
the aggregation of preferences. This crucial point was proved by Arrow
(1959) in the case of nonfuzzy relations. Then, Leclerc (1984) and Perny
(1992) have provided extensions of these results in the case of fuzzy rela-
tions. This shows the necessity of resorting to an additional exploitation
procedure to derive a transitive information when a ranking is required.

3 Construction of Preference Relations from Criterion
Values

A criterion is a real-valued function g defined on the set of alternatives A,
allowing these alternatives to be compared as follows:

g(a) ≥ g(b) =⇒ aRb, (1)

where R is a weak preference (or outranking) relation describing the prefer-
ence of the decision maker (DM) from a particular point of view, represented
by g.

When we have several criteria, such as g1, . . . , gn then the corresponding
m weak preferences are (R1, . . . , Rm), in accordance with (1).

Quantities gj(a) are called criterion values, representing partial evalua-
tions or scores of a according to criterion j.

Consider now a single criterion denoted by g. In what follows, we study
the problem of building up crisp as well as fuzzy preferences from g.



3.1 Constructing Crisp Preferences

Conventional way of building a preference model: g is interpreted as a true-
criterion: a is strictly preferred to b when g(a) > g(b), not matter of how
large the difference is (total preorder). In real-life problems however a small
positive difference of scores is not always a justification for a preference.

A classical attitude is to assess discrimination thresholds to distinguish
between significant and not significant differences of scores. A typical exam-
ple consists of the semi-criterion and the associated semi-order structure.

A standard semi-criterion is defined by a criterion function g and a thresh-
old function q such that:

g(a) > g(b) ⇒ g(a) + q(g(a)) ≥ g(b) + q(g(b)),

aPb ⇔ g(a)− g(b) > q(g(b)),

aIb ⇔ |g(a)− g(b)| ≤ q(g(a)) ∧ q(g(b)).

The first condition is a local consistency condition, making it impossible
to consider the difference g(c)− g(a) as significant when a greater difference
g(c)− g(b) is not significant (assuming g(a) > g(b)).

Then the preference structure (P, I, ∅) defines a semiorder R, by R =
P ∪ I. Without the local consistency (called nonstandard semi-criterion),
interval orders are rediscovered.

Some drawbacks of this modelling follows now.
Suppose two candidates a and b are such that

g(a)− g(b) = q(g(b))− ε/2,

where ε is a positive quantity very small compared to q(g(b)).
If a slightly superior score (+ε) was attached to a, we would obtain

g(a)− g(b) = q(g(b)) + ε/2,

transforming the previous indifference aIb into strict preference aPb.
One can overcome these difficulties as follows. Separate the preference

area from the indifference area by inserting an intermediate zone called weak-
preference area (Roy and Vincke, 1984). A possible interpretation is a hesi-
tation between strict preference and indifference.

Formally, consider two discrimination threshold functions

• the indifference threshold q,
• the preference threshold p,

to define a pseudo-criterion.



This leads to define crisp binary relations called strict preference P , indif-
ference I, and weak preference Q. They form together a pseudo-order struc-
ture, and are defined as follows:

aPb ⇔ g(a)− g(b) > p(g(b)),

aQb ⇔ p(g(b)) ≥ g(a)− g(b) > q(g(b)),

aIb ⇔ |g(a)− g(b)| ≤ q(g(a)) ∧ q(g(b)),

where q and p satisfy the local consistency condition, and

p(a) > q(a) (a ∈ A).

This last model offers new possibilities, but does not really solve the
problem of sensitivity. All these difficulties will remain as long as we will try
to make discrete a continuum of preference situations. The real solution is
provided by using fuzzy relations.

3.2 Constructing Fuzzy Preferences

We introduce now two ways (which may be mixed) of implementing the fuzzy
approach to model and process preference information. The first way leads
to a model which can be seen as an extension of the previous crisp model
obtained by replacing pseudo-orders (Ij , Qj , Pj) by fuzzy semi-orders. Let us
detail the typical features of these fuzzy preference structures and their link
with the generalized outranking relations introduced in Perny and Roy, 1992.

For any criterion j whose scale is Xj , the fuzzy binary relation Sj is said
to be a monocriterion outranking relation if there is a real valued function
tj , defined on X2

j , verifying Sj(ai, ak) = tj(aij , akj), for all ai, ak in A, such
that:

∀y ∈ Xj , tj(x, y) is a nondecreasing function of x,
∀x ∈ Xj , tj(x, y) is a nonincreasing function of y,
∀z ∈ Xj , tj(z, z) = 1.

As shown by Perny (1992), the relation Sj is a reflexive, complete, semi-
transitive and Ferrers fuzzy relation, and thus it is a fuzzy semi-order. Every
α-cut of Sj is a crisp semi-order, and these semi-orders form together a homo-
geneous family compatible in the sense of Roberts (1971) with the classical
weak order relation ≥ on scores (for more details see Perny and Roy, 1992).

Thus, a natural extension of indifference and preference relations in the
fuzzy case is given by setting:

∀(ai, ak) ∈ A×A, Ij(ai, ak) = min{Sj(ai, ak), Sj(ak, ai)}
Pj(ai, ak) = 1− Sj(ak, ai)

(2)



As it can be proved, these relations are the symmetric and asymmetric part
of the outranking relations Sj where Sj(ai, ak) represents the degree to which
ai is not worse than ak. Such indices are widely involved in Electre Methods
(see Roy, 1978) and Promethee Methods (see Brans and Vincke (1985)).

In the Electre III method proposed by Roy (1978), the relations Sj are
characterized by the following function.

tj(x, y) =
pj(x)−min{y − x, pj(x)}
pj(x)−min{y − x, qj(x)}

This amounts to define fuzzy indifference and preference relations Ij and
Pj , (j = 1, . . . , n), as shown in the next figure.

g(a)-p g(a)-q g(a) g(a)+q g(a)+p

g(b)

1
P(a,b) I(a,b)=I(b,a) P(b,a)

A second way of including fuzziness in pairwise comparisons methods is
to consider fuzzy scores. In this case, we associate to each alternative ai, for
each criterion function gj , a fuzzy interval defined as follows:

ãij = {(x, µãij (x))|x ∈ Xj}.
By definition, ãij is a normalized convex fuzzy subset of the real line, char-
acterized by its membership function µãij such that:

infx∈Xj µãij (x) = 0, supx∈Xj
µãij (x) = 1

∀x1, x2 ∈ Xj , ∀x3 ∈ [x1, x2], µãij (x3) ≥ min{µãij (x1), µãij (x2)}

Then equation (2) allow to define fuzzy binary relations Ij and Pj for any
dimension j by setting:

Sj(ai, ak) = max
x≥y

min{µãij (x), µãkj
(y)}. (3)

In this case Sj(ai, ak) measures the possibility for ai to be given a score
as least as good as the score of ak. In other words: the possibility of the event
ak is outranked by ai. Moreover, Ij(ai, ak) measures the possibility for ai and
ak to be equivalent whereas Pj(ai, ak) measures the necessity of the event ak

is outranked by ai.
Thus, in both cases, we get a fuzzy representation of preferences which

seems to be well fitted to the imprecise nature of information. In particular,



this kind of representation allows to be sure that small variations of input
data will modify in a continuous way the resulting model of preferences.

In case of having all the marginal outranking relations Sj(ai, ak), we must
determine a global outranking relation S(ai, ak) with respect to all the objec-
tives. Once more, the subjectivity of the decision maker must be taken into
account and we are looking for an operator h such that :

S = h(S1, . . . , Sn)

for any pair (ai, ak).

Fodor and Roubens (1994) have suggested to consider monotonic and
idempotent operators corresponding to the following compromise attitudes :

• ai globally outranks ak if ai outranks ak for all significant objectives :

hI→(S1, . . . , Sn) = min
j=1,...,n

I→(ωj , Sj(ai, ak))

represents the degree of truth of the statement “for all objectives, if it is
significant, then ai is as good as ak”.

• ai globally outranks ak if ai outranks ak for at least one significant ob-
jective :

hI→c (S1, . . . , Sn) = max
j=1,...,n

I→c (1− ωj , Sj)

represents the degree of truth of the statement “there exists at least one
objective for which it is not true that if it is significant, then ai is not as
good as ak”.

I→ represents a fuzzy implication and such that I→(1, x) = x, and I→c (0, x) =
x. Moreover, I→c is a coimplication defined as I→c (x, y) = 1−I→(1−x, 1−y).

It is interesting to notice that

min
j=1,...,n

Sj ≤ hI→(S1, . . . , Sn) ≤ hI→c (S1, . . . , Sn) ≤ max
j=1,...,n

Sj .

hI→ corresponds to the pessimistic attitude and hI→c to the optimistic at-
titude. If the Kleene-Dienes implication-coimplication is used, one obtains
the weighted minimum-maximum operators studied by Dubois and Prade
(1986) :

hmin(S1, . . . , Sn) = min
j=1,...,n

max{1− ωj , Sj}
hmax(S1, . . . , Sn) = max

j=1,...,n
min{ωj , Sj}

which correspond to weighted medians.



If the Gödel residual implication-coimplication is considered, then

hI→(S1, . . . , Sn) = min
j

Sj<ωj

Sj (or 1 if all j give Sj ≥ ωj)

hI→c (S1, . . . , Sn) = max
j

Sj>1−ωj

Sj (or 0 if all j give Sj ≤ 1− ωj)
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