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Abstract: This paper presents a comparison between classical frequent pattern mining 
algorithms that use candidate set generation and test and the algorithms without candidate 
set generation. In order to have some experimental data to sustain this comparison a 
representative algorithm from both categories mentioned above was chosen (the Apriori, 
FP-growth and DynFP-growth algorithms). The compared algorithms are presented 
together with some experimental data that lead to the final conclusions. 
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1 Introduction 

 
 In recent years the sizes of databases has increased rapidly. This has led to 
a growing interest in the development of tools capable in the automatic extraction 
of knowledge from data. The term Data Mining, or Knowledge Discovery in 
Databases, has been adopted for a field of research dealing with the automatic 
discovery of implicit information or knowledge within databases [7]. The implicit 
information within databases, and mainly the interesting association relationships 
among sets of objects, that lead to association rules, may disclose useful patterns 
for decision support, financial forecast, marketing policies, even medical diagnosis 
and many other applications. This fact attracted a lot of attention in recent data 
mining research [7]. As shown in [1] , mining association rules may require 
iterative scanning of large databases, which is costly in processing. Many 
researchers have focused their work on efficient mining of association rules in 
databases ([1], [2], [6], [7], [8], [9],[11]). 
 A very influential association rule mining algorithm, Apriori [1], has been 
developed for rule mining in large transaction databases. Many other algorithms 
developed are derivative and/or extensions of this algorithm. A major step forward 
in improving the performances of these algorithms was made by the introduction of 
a novel, compact data structure, referred to as frequent pattern tree, or FP-tree [2], 
and the associated mining algorithm, FP-growth. 



 

The main difference between the two approaches is that the Apriori-like techniques 
are based on bottom-up generation of frequent itemset combinations and the FP-
tree based ones are partition-based, divide-and-conquer methods. 
After conducting several performance studies Győrödi C., et al. (2003) developed 
an improved FP-tree based technique, named Dynamic FP-tree [11]. The 
developed method clearly indicates a performance gain mainly when applied on 
real world sized databases. 
After this introduction, the paper is organised as follows. Section 2 presents the 
problem definition. The main aspects of Apriori, FP-growth and DynFP-growth 
algorithms are presented in Section 3. Section 4 shows a comparative study of the 
algorithms and the paper is concluded in Section 5. 

 

2    Problem Definition 
Association rule mining finds interesting association or correlation relationships 
among a large set of data items [8].  The association rules are considered 
interesting if they satisfy both a minimum support threshold and a minimum 
confidence threshold [3]. A more formal definition is the following [4]. Let ℑ = {i1, 
i2, …, im} be a set of items. Let D, the task-relevant data, be a set of database 
transactions where each transaction T is a set of items such that T ⊆ ℑ. Each 
transaction is associated with an identifier, called TID. Let A be a set of items. A 
transaction T is said to contain A if and only if A ⊆ T. An association rule is 
implication of the form A ⇒ B, where A ⊂ ℑ, B ⊂ ℑ, and A ∩ B = ∅. The rule A 
⇒ B holds in the transaction set D with support s, where s is the percentage of 
transactions in D that contain A ∪ B (i.e., both A and B). This is taken to be the 
probability, P(A ∪ B). The rule A ⇒ B has confidence c in the transaction set D if c 
is the percentage of transactions in D containing A that also contain B. This is taken 
to be the conditional probability, P(B|A). That is, 
 
   support(A ⇒ B) = P(A ∪ B)  (1) 
   confidence(A ⇒ B) = P(B | A)  (2) 
 
The definition of a frequent pattern relies on the following considerations [5]. A set 
of items is referred to as an itemset (pattern). An itemset that contains k items is a 
k-itemset. For example the set {name, semester} is a 2-itemset. The occurrence 
frequency of an itemset is the number of transactions that contain the itemset. This 
is also known, simply, as the frequency, support count, or count of itemset. An 
itemset satisfies minimum support if the occurrence frequency of the itemset is 
greater than or equal to the product of minimum support and the total number of 
transactions in D. The number of transactions required for the itemset to satisfy 
minimum support is therefore referred to as the minimum support count. If an 
itemset satisfies minimum support, then it is a frequent itemset (frequent pattern). 
 The most common approach to finding association rules is to break up the 
problem into two parts [6]: 



 

1. Find all frequent itemsets: By definition, each of these itemsets will occur 
at least as frequently as a pre-determined minimum support count [8]. 

2. Generate strong association rules from the frequent itemsets: By 
definition, these rules must satisfy minimum support and minimum 
confidence [8]. 

 
Additional interestingness measures can be applied, if desired. The second step is 
the easier of the two. The overall performance of mining association rules is 
determined by the first step. As shown in [2], the performance, for large databases, 
is most influenced by the combinatorial explosion of the number of possible 
frequent itemsets that must be considered and also by the number of database scans 
that has to be performed.  
 
3 The Algorithms in Association Rules Mining 

 
3.1   The Apriori Algorithm 

 
 Figure 1 gives an overview of the Apriori algorithm for finding all 
frequent itemsets, using the notation in Table 1. The first pass of the algorithm 
simply counts item occurrences to determine the large 1-itemsets. A subsequent 
pass, say pass k, consists of two phases. First, the large itemsets Lk-1 found in the 
(k-1)th pass are used to generate the candidate itemsets Ck, using the Apriori 
candidate generation function (apriori-gen) described below. Next, the database is 
scanned and the support of candidates in Ck is counted. For fast counting, an 
efficient determination if the candidates in Ck that are contained in a given 
transaction t is needed. A hash-tree data structure [1] is used for this purpose. The 
Apriori algorithm is: 

 
 L1 = {large 1-itemsets}; 

for ( k = 2; Lk-1 ≠ Ø; k++ ) do begin 
  Ck = apriori-gen(Lk-1); //New candidates 
  forall transactions t ∈  D do begin 
 Ct = subset(Ck, t);   
 //Candidates contained in t 
   forall candidates c ∈  Ct do 
    c.count++; 
  end 
  Lk = { c ∈  Ck | c.count ≥ minsup } 
end 
Answer = ∪ k Lk; 

Figure 1. The Apriori algorithm. 
 

The apriori-gen function takes as argument Lk-1, the set of all large (k-1)-itemsets. 
It returns a superset of the set of all large k-itemsets and is described in [1]. 
 
 



 

3.2    The FP-growth Algorithm 
 

 As shown in [2], the main bottleneck of the Aprioi-like methods is at the 
candidate set generation and test. This problem was dealt with by introducing a 
novel, compact data structure, called frequent pattern tree, or FP-tree then based 
on this structure an FP-tree-based pattern fragment growth method was developed, 
FP-growth.  The definition, according to [2] is as follows. 
Definition 1 (FP-tree) A frequent pattern tree is a tree structure defined below. 

1. It consists of one root labeled as “root”, a set of item prefix sub-trees as the 
children of the root, and a frequent-item header table. 

2. Each node in the item prefix sub-tree consists of three fields: item-name, count, 
and node-link, where item-name registers which item this node represents, count 
registers the number of transactions represented by the portion of the path 
reaching this node, and node-link links to the next node in the FP-tree carrying 
the same item-name, or null if there is none. 

3. Each entry in the frequent-item header table consists of two fields, (1) item-name 
and (2) head of node-link, which points to the first node in the FP-tree carrying 
the item-name. 

   
The actual algorithm, according also to [2] is: 
Algorithm 1 (FP-tree construction) 
Input: A transactional database DB and a minimum support threshold ξ. 
Output: Its frequent pattern tree, FP-tree 
Method: The FP-tree is constructed in the following steps: 

1. Scan the transaction database DB once. Collect the set of frequent items F and 
their supports. Sort F in support descending order as L, the list of frequent items. 

2. Create the root of an FP-tree, T, and label it as “root”. For each transaction Trans 
in DB do the following. 
a. Select and sort the frequent items in Trans according to the order of L. Let the 

sorted frequent item list in Trans be [p | P], where p is the first element and P 
is the remaining list. Call insert_tree([p | P], T). 

b. The function insert_tree([p | P], T) is performed as follows. If T has a child N 
such that N.item-name = p.item-name, then increment N’s count by 1; else 
create a new node N, and let its count be 1, its parent link be linked to T, and 
its node-link be linked to the nodes with the same item-name via the node-link 
structure. If P is nonempty, call insert_tree(P, N) recursively. 

The FP-growth [2] algorithm for mining frequent patterns with FP-tree by pattern 
fragment growth is: 

 
Input: a FP-tree constructed with the above mentioned algorithm; 
 D – transaction database; 
 s – minimum support threshold. 
Output: The complete set of frequent patterns. 
Method:  
call FP-growth(FP-tree, null). 
Procedure FP-growth(Tree, A) 
{ 

if Tree contains a single path P 
then for each combination (denoted as B) of the nodes in the path P do 



 

generate pattern B ∪ A with support=minimum support of nodes in B 
else for each ai in the header of the Tree do 
{ 

generate pattern B = ai ∪ A with support = ai.support; 
construct B’s conditional pattern base and B’s conditional FP-tree 
TreeB; 
if TreeB ≠ Ø 

then call FP-growth(TreeB, B) 
} 

} 
 

3.3    The DynFP-growth Algorithm 
 
 As shown in [2] the main bottleneck of the Aprioi-like methods is at the 
candidate set generation and test. This problem was taken into consideration by 
introducing a novel, compact data structure, named frequent pattern tree, or FP-
tree, then based on this structure an FP-tree-based pattern fragment growth method 
was developed, FP-growth. The completeness and compactness of this structure is 
also shown in [2]. Some observations on the way the FP-tree are constructed. 

1. The resulting FP-tree is not unique for the same “logical” database. 
2. The process needs two complete scans of the database. 

  
A solution to the first observation was given by Győrödi C., et al., (2003) [11], by 
using a support descending order together with a lexicographic order, ensuring in 
this way the uniqueness of the resulting FP-tree for different “logically equivalent” 
databases. The second observation was addressed also by Győrödi C., et al., (2003) 
[11], by devising a dynamic FP-tree reordering algorithm, and employing this 
algorithm whenever a “promotion” to a higher order of at least one item is 
detected. Although the resulting FP-tree could be too large to be stored in its 
entirety in the main memory, because of its properties, and for a relatively high 
number of queries with different minimum supports, it would be more practical, 
from time consuming point of view, to store it on disk in its full form and using 
only the portions that are required from it. Using the dynamic reordering one 
doesn’t have to rebuild the FP-tree even if the actual database is updated. In this 
case the algorithm has to be performed taking into consideration only the new 
transactions and the stored FP-tree. This approach can provide a very quick 
response to any queries even on databases that are being continuously updated – 
fact that is true in many cases.  Because the dynamic reordering process, Győrödi 
C., et al., (2003) [11] proposed a modification of the original structures, by 
replacing the single linked list with a doubly linked list for linking the tree nodes to 
the header and adding a master-table to the same header. All these modifications 
are presented in more details in [11]. The Dynamic FP-tree construction/reordering 
algorithm (Győrödi C., et al., 2003) is described in the following.  
 
Algorithm (Dynamic FP-tree construction) 
Input: A transactional database DB and a minimum support threshold ξ. 
Output: Its frequent pattern tree, FP-tree 



 

Method: The FP-tree is constructed in the following steps: 
1. Create the root of an FP-tree, T, and label it as “root”. For each transaction Trans in 

DB the next steps must be followed. 
a. Add the items in Trans into the header. 
b. Select and sort the items in Trans according to the order of the header’s master-

table. Let the sorted frequent item list in Trans be [p | P], where p is the first 
element and P is the remaining list. Call insert_tree([p | P], T). 

c. The function insert_tree([p | P], T) is performed as follows. If T has a child N 
such that N.item-name = p.item-name, then increment N’s count by 1; else create 
a new node N, and let its count be 1, its parent link be linked to T, and its node-
link be linked to the nodes with the same item-name via the node-link structure. 
If P is nonempty, call insert_tree(P, N) recursively. 

d. If reordering is needed (i.e. a “promotion” was detected) then call reorder() on 
the FP-tree. 

The reorder() function is performed as follows: 
1. Gather the “promoted” items into a reorderList ordered according to their support 

(descending) and lexicographical order. 
2. Call checkpoint() to update the insertion order into the FP-tree. 
3. For each item from reorderList go through the list of linked nodes and for each of these 

nodes call moveUp(node) to place that node into the correct position in the FP-tree, 
according to the header’s master-table. 

The moveUp(node) function is defined as: 
1. Repeat the steps (a. to g.) until the node and its current parent are in the properOrder 

a. Take the node’s parent’s parent (pparent) 
b. If parent has the same support as the node, remove the parent from its parent’s 

childNodes and assign it to newNode 
c. Else perform the following actions: 

i. Create a newNode with the same item as the parent, but having the 
node’s support. 

ii. Link it into the parent’s list of nodes with the same item. 
iii. Adjust the support of the parent, by subtracting the node’s support 
iv. Remove the node from the childNodes of the parent 

d. Replace the childNodes into the newNode with the childNodes from the node 
and update the parent link of the childNodes with their new parent (newNode). 

e. Set the parent link of the node to pparent (the original parent’s parent), initialise 
its childNodes with the newNode, and set the newNode’s parent to node. 

f. (optional step) If there is already an existingNode for the node’s item in the 
pparent’s childNodes, then call merge(existingNode, node), and continue with 
the existingNode as the current node. 

g. Otherwise insert the node into the childNodes of pparent. 
 
The resulting FP-tree is compatible for mining purposes with the original FP-
growth algorithm described in [2]. Because we use the Dynamic-FPtree 
construction algorithm we renamed the FP-growth in to DynFP-growth.. 

 
4 Comparative Study 
 
 The three frequent pattern mining algorithms were implemented in Java 
and tested on several data sets. The platform’s specifications used for this test was: 



 

Pentium 4 1.7GHz processor, with 256 MBRAM, Windows 2000. In order to 
obtain more realistic results a Microsoft SQL 2000 Server was used and accessed 
through the standard ODBC interface. To study the performance and scalability of 
the algorithms generated data sets with 10,000 to 500,000 transactions, and support 
factors between 5% and 40% were used. Any transaction may contain more than 
one frequent itemset. The number of items in a transaction may vary, as well as the 
dimension of a frequent itemset. Also, the number of items in an itemset is 
variable. Taking into account these considerations, the generated data sets depend 
on the number of items in a transaction, number of items in a frequent itemset, etc. 
The necessary parameters to generate the test data sets are defined in Table 1: 

|D| Number of transactions 
|T| Average size of the transactions 
|L| Number of maximal potentially large itemsets  
N Number of items 

Table 1. Parameters  
 

 The test data set is generated for a number of items N = 100 and a 
maximum number of frequent itemsets |L| = 3000. |T| was chosen to be 10. 
 Some of the results of the comparison between the Apriori, FP-growth and 
DynFP-growth algorithms for support factor of 5% and for different data sets are 
presented in Table 2: 

Exec time (sec)  
Transactions (K) 

Apriori  DynFP-Growth FP-growth 
10 13.94 2.32 3.76
20 21.98 3.98 6.88
30 48.37 8.23 14.63
40 66.50 12.10 20.90
50 107.65 19.50 34.30
80 198.30 37.90 64.80

110 1471.40 55.00 95.50
150 3097.20 98.90 174.60
190 5320.60 152.70 273.60
300 9904.80 284.00 526.70
400 17259.20 458.10 849.70
520 20262.60 610.20 1150.70

Table 2. The results for support factor of 5%. 

Table 2 shows that the execution time of the algorithms grows with the dimension 
of the data set. The best performance is obtained by the FP-growth algorithm. 
Figure 2 shows that the execution time for the FP-growth algorithm is constant for 
a certain data set when the support factor decreases from 40% to 5% while, in the 
same time, the execution time of the Apriori algorithm increases dramatically. For 
a support factor of 30% or greater and a data set of 40,000 transactions, the Apriori 
algorithm has better performances than the FP-growth algorithm, but for a support 
factor of 20% or less its performance decreases dramatically. Thus, for a support 



 

factor of 5% the execution time for the Apriori algorithm is three times longer than 
the execution time of the FP-growth algorithm and up to five times longer than 
DynFP-growth. 
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Figure 2. Scalability function of support for D1 40K database. 
 

 The execution time for the two algorithms for different values for the 
support factor on a data set with 150000 transactions is shown in Table 3. We 
notice that the Apriori algorithm has a lower performance than the FP-growth  and 
DynFP-growth algorithms even for a support factor of 40%. 

Exec time (sec)  
Support (%) 

Apriori DynFP-Growth FP-growth 
5 3097.20 98.90 174.60

10 2186.10 91.20 170.80
15 1308.90 90.10 170.20
20 1305.60 89.00 170.90
25 870.50 89.00 171.30
30 875.00 89.50 172.50
35 440.00 88.90 169.80
40 441.60 90.10 175.20

Table 3. The results for D1 150K by support. 
 
Figure 3 presents the execution time of the Apriori algorithm for different values of 
the support factor on different sized data sets. From here we notice that the 
performance of the algorithm is influenced by the dimensions of the data set and 
also by the support factor. 
Figure 4 presents the execution time of the FP-growth algorithm for different 
values of the support factor on different sized data sets. From here we notice that 
the performance of the algorithm is depending only on the dimensions of the data 
set, the support factor having a very small influence. 
It can be observed that the execution time of DynFP-Growth does not depend on 
support but only on the database size, this because the tree construction technique 
does not need the support information. In this way the tree will contain all the 
database transactions and depending on the required support the results will be 



 

refined so that they will contain only the itemsets that have their frequency greater 
than the required support. 
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Figure 3. Apriori scalability by transactions/support. 
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Figure 4. FP-growth scalability by transactions/support. 
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Figure 5. DynFP-growth scalability by transactions/support.  



 

 
5     Conclusions 

 
From the experimental data presented it can be concluded that the DynFP-growth 
algorithm behaves better than the FP-growth algorithm. First of all, the FP-growth 
algorithm needs at most two scans of the database, while the number of database 
scans for the candidate generation algorithm (Apriori) increases with the dimension 
of the candidate itemsets. Also, the performance of the FP-growth algorithm is not 
influenced by the support factor, while the performance of the Apriori algorithm 
decreases with the support factor. 
Thus, the candidate generating algorithms (derived from Apriori) behave well only 
for small databases (max. 50,000 transactions) with a large support factor (at least 
30%). In other cases the algorithms without candidate generation DynFP-growth  
and FP-growth behave much better. 
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