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Abstract: The paper presents a rigid body kinematic model of the co-ordinate measuring 
machin. The individual error components are described by means of transformation 
matrices and the resulting global error is given in the form of twisted space curves. A new 
techniques for measuring these error components is described. Using these parameters, an 
error compensation program has been implemented, which has been applied to a suitable 
three coordinate measuring machine. The results of this research are presented in the 
subsequent sections. 
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1 Introduction 

Co-ordinate metrology has now become a firmly established technique in industry. 
The universal applicability and high degree of automation accounts for the succes 
of co-ordinate mterology in the last 20 years. The measuring of complex freeform 
surface would be unthinkable without coordinate measuring machines. The 
workpiece geometrical feaures (forms and sizes) are determined from the relative 
co-ordintes of characteristic surface points. The accuracy of these  measurements 
depends on the mechanical properties of the co-ordinate measuring machine, the 
measuring system, the probe, the drive and control system, and the software used 
to determine the geometric features. The enviromental conditions and the selected 
measuring strategy also largly influence the accuracy of the results. 

Fortunaly, we now have the capability to electronically compensate for a large 
portion of the measuring deviations. After manufacture, the co-ordinate measuring 
machine can be “mapped” for deviations with standardized instruments. These 
errors are then accounted for supplying a computer intern mathematical model for 
that particular machine. The software runs in real time to compensate for the 
deviations. However error compensation still depends on the stability of the 
structure. 



In this paper we will present a general model describing the error components and 
the resulting volumetric error of the co-ordinate measuring machine. 

 

 

2 The mathematical model 
A linear stage of  precision machinery is expected to travel along a straight line 
and stop at a predefined position. However in the practiced the actual path deviate 
from the straight line due to the geometric errors of the guideways and it results 
also in angular errors as it is given in Fig. 1. 
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Fig.1. Representation of the error components of a linear stage 
(abstract and actual carriage) 

 

For each axis a transformation matrix can be used to describe in homogenious co-
ordinates the the deviations from the ideal motion. Neglecting the second order 
angular error terms we get for the x-axis: 

 1       -θ (x) θz     y(x)  dx(x) 

     dT(x)  =      θ (x)z        1     -θx(x)  dy(x) 

   -θy(x) θ       x(x)    1      d (x) z

0          0       0        1 

Analog results can be derived for the y and z axis. Note that only the translational 
kinematic components are described in the form of homogenious transformations, 
but the rotational components can presented on a similar way. 

A traditional co-ordinate measuring machine consists of three translational 
components x, y and z, and a probe is attached to the end of the z component. 
Usually the probe can be considered as a constant translational transformation. 

Performing distance measurement in the measuring volume of the co-ordinate 
measuring machine we observe the relative change of the probe tip, therefore only 
the relative deviations are of interest.  



 

They are listed below:  

Δx = dx(x) + dx(y) + dx(z) – y.δ θz(x) + z[δ θy(x)  + δ θy(y)  ] 

Δy = dy(x) + dy(y) + dy(z) + α.x + z[δ θx(x)  + δ θx(y)  ] 

Δz = dz(x) + dz(y) + dz(z) + β.x + y[γ + δ θx(x) ] 

 

The resulting 21 geometrical parameters are now defined relative to the measuring 
frame. Also the actual out of straightness δ and the out of squareness parameters α, 
β, γ are introduced.  

Currently the application of the single plane stages gain more and more 
importance. In that case a modified version of the above model should be used. 
This model and corresponding error correction algorithm will be presented in a 
separate paper. 

 

3 Measurement methode and techniques 
In Fig. 2. one can see the setup for the measurement of the six error components of 
a moving stage.  

The stationary part consists of a laser head with three parallel laser sources, a 
beam splitter an d two quadrant photo detectors. The moving part consists of three 
retroreflectors. As laser heads single and double beam interferometers are used.  In 
order to minimize the cosine errors the beams are adjusted accuratly before the 
measurement. From the displacement of the three retrereflectors the position, pitch 
and yaw error could be calculated. Two of the three reflected laser beams are split 
by a large area beam splitter before entering into the laser head. These beams are 
received by the two four quadrant detectors. From signal induced by the deviation 
of the laser spots error of two directional straightness and the roll error can be 
determinded. 

The displacements is the avaredge of two simultaniously measured displacements  

L = (L1 + L2)/2 

as provided by the two beam laser interferometer. 

The size of yaw error is also delivered by the the two beam interferometer: 

Yaw error (θz) = arctg (L2 – L1)/Dh  ≈ (L2 – L1)/Dh

where Dh is the distance between the two laser beams (h stands for horizontal) 
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Fig. 2. The setup for a six-degree-of-freedom 

measuring system 

Similarly 

Pitch error (θy) = argtg (L3 – L1)/Dv ≈ (L3 – L1)/Dv 

where Dv is the distance between the two laser beams (v stands for vertical) 

and the rool error can be calculated from the relative vertical deviation of the two 
fou 

Roll error (θx) = (v2 – v1)/2S 

The four quadrant photo detectors are used to determine the out of straightness 
error by sensing the position of the laser spot centroid deviated form the center. As 
given in Fig. 3.  
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Fig. 3. Measuring pricipal for the out of straightness error 



When the stage is moved along the the axis of motion, with a certain lateral 
displacement Δ, the laser beam reflected by the retroreflector and split by the 
beam splitter will be shifted on the corresponding detector by a distance 2Δ, this 
means a sensitivity improvement by a factor 2. The out of strightness errors can be 
calculated from the horizontal and vertical positions of the laser spot on the 
detector as given below: 

Δ = (h1 + h2)/4     Δ = (v1 + v2)/4 

Where  (h1,v1) and (h2,v2) are the outputs of the detector 1 and 2 respectively. 

 

4 Numerical error compensation 
A numerical error compensation means the correction of the measurement values 
of the co-ordinate measuring machine for the relative three dimensional 
translational deviation at the specific co-ordinates. In order to obtain  continuous  
correction  for the whole measuring volume an appropriate interpolation of the 
obtained data is calculated. As interpolating function piecewise polynomials are 
chosen because they are computed easely during the correction process. As the 
data points are equally spaced and are “smooth” the selection of cubic splines 
seems to be obvious. In order to compute the de Boor point from the set of data 
point the following system of linear equations should solved: 

 
    1                                      d0                       b1
    3 7/2  /2                               d1                      6X1
          1 4 1                          d2               6X2
               1 4 1                     d3             6X= 3     
               --------------- 
                       1 3 7/2 /2          d 6XL-1                   L-2
                                1          d                bL 3L-1

 

where the X1,…,XL-2 are the data points and the d0,..,dL are the de Boor points of 
the interpolating cubic uniform B-spline. The de Boor points are stored in the 
computer and used to calculate correction values for any arbitrary point in space. 

 

Conclusions 
 
In this paper the volumetric error components of co-ordinate measuring machines 
was described using homogenous co-ordinate transformation. A measuring 
methode was developed for simultaniously obtaining the corresponding error 
components. Volumetric error description has been obtained by the presented 



functions, which are calculated by special polynomial fitting procedures. As a 
result a simple and fast digital error correction methode has been developed. 
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